» Drell RHIC « Oleg Eyser ECT* Workshop on Drell Yan Physics and the Structure of Hadrons May 21-25, 2012, Trento, Italy.

Slides:



Advertisements
Similar presentations
Longitudinal Spin at RHIC 29 th Winter Workshop on Nuclear Dynamics February 7, 2013 Cameron McKinney.
Advertisements

Determination of the gluon polarisation at COMPASS & RHIC Sébastien Procureur (CEA - Saclay) Determination of  G at COMPASS & RHICPAVI06, Milos S.Procureur.
Xiaorong Wang, Heavy Flavor Workshop at UIC, June, Heavy Flavor and Spin Program at Xiaorong Wang New Mexico State University Heavy Flavor workshop.
PHENIX Decadal Plan o Midterm upgrades until 2015 o Long term evolution after 2015 Dynamical origins of spin- dependent interactions New probes of longitudinal.
Constraining the polarized gluon PDF in polarized pp collisions at RHIC Frank Ellinghaus University of Colorado (for the PHENIX and STAR Collaborations)
09/30/'06SPIN2006, T. Horaguchi1 Measurement of the direct photon production in polarized proton-proton collisions at  s= 200GeV with PHENIX CNS, University.
10/03/'06 SPIN2006, T. Horaguchi 1 Measurement of the direct photon production in polarized proton-proton collisions at  s= 200GeV with PHENIX CNS, University.
J. Seele - WWND 1 The STAR Longitudinal Spin Program Joe Seele (MIT) for the Collaboration WWND 2009.
Overview of Orbital Angular Momentum via TMD Measurements in Hadronic Collisions L.C. Bland Brookhaven National Lab ECT*, Trento 28 August 2014 OUTLINE.
Douglas Fields University of New Mexico. Direct vs. Indirect Measurement Width of room Tape measure Spin ½ of proton Stern-Gerlach experiment ΔΣ DIS ΔG.
Measurement of Forward Jet Production in polarized pp collisions at √s=500 GeV L. Nogach, IHEP (Protvino) for A N DY The 20th International Symposium on.
K. Barish Kenneth N. Barish for the PHENIX Collaboration 28 th Winter Workshop on Nuclear Dynamics Dorado del Mar, Puerto Rico, April 2012 sPHENIX Spin.
RHIC-Spin: Results and Outlook KEK Workshop on High-Energy Hadron Physics with Hadron Beams January 7, 2010 Yuji Goto (RIKEN/RBRC)
Spin of the proton and its transverse spin structure at RHIC HERMES seminar at Tokyo Tech November 9, 2005 Yuji Goto (RIKEN)
1 Transverse Spin Measurements at PHENIX John Koster for the PHENIX collaboration University of Illinois at Urbana-Champaign DIS /04/27.
Measurement of Transverse Single-Spin Asymmetries for Forward π 0 and Electromagnetic Jets in Correlation with Midrapidity Jet-like Events at STAR in p+p.
Xiaodong Jiang Gluon spin with longitudinal asymmetries at RHIC. Parton angular motion - transverse spin asymmetries. Spin at RHIC : p+p. Spin at JLab:
Columbia University Christine Aidala September 4, 2004 Solving the Proton Spin Crisis at ISSP, Erice.
A N DY Status Commissioning with colliding beams (p  +p  at  s=500 GeV) L.C.Bland, for AnDY 5 April 2011 Time Meeting, BNL.
Thomas Roser Snowmass 2001 June 30 - July 21, 2001 Polarized Proton Acceleration and Collisions Spin dynamics and Siberian Snakes Polarized proton acceleration.
PHENIX Local Polarimeter PSTP 2007 at BNL September 11, 2007 Yuji Goto (RIKEN/RBRC)
Columbia University Christine Aidala April 16, 2004 Single-Spin Transverse Asymmetry in Neutral Pion and Charged Hadron Production at DIS 2004, Slovakia.
Spin Physics with PHENIX (an overview, but mainly  G) Abhay Deshpande Stony Brook University RIKEN BNL Research Center July 28, 2011.
Transverse Spin Physics with PHENIX 1 Transverse Spin Physics with the current PHENIX K. Oleg Eyser UC Riverside RHIC Spin: The next decade May 14-16,
What can we learn from η production in proton-proton collisions? Joe Seele MIT and University of Colorado.
The Gluon’s spin contribution to the proton’s spin ---as seen at RHIC G. Bunce Moriond QCD, March 2008 I would like to thank Les Bland, Werner Vogelsang,
E.C. Aschenauer Why run top-energy p+p in run-16 2 Transverse momentum dependent parton distribution functions  initial state effects  important in.
1 Л.Ногач, ИФВЭ, Протвино the STAR Collaboration Односпиновая асимметрия в образовании π 0 - мезонов в области фрагментации поляризованного протонного.
Columbia University Christine Aidala September 2005 Transverse Spin at Results and Prospects Transversity 2005, Como.
» Absolute Polarimetry of Proton Beams at RHIC« Oleg Eyser for the RHIC Polarimetry Group International Workshop on Polarized Sources, Targets and Polarimetry.
Measurements of Transverse Spin Effects with the Forward Pion Detector of STAR Larisa Nogach Institute of High Energy Physics, Protvino for the STAR collaboration.
Measurement of the Transverse Single-Spin Asymmetries for π 0 and Jet-like Events at Forward Rapidities at STAR in p+p Collisions at √s = 500 GeV Mriganka.
Measurements of thermal photons in heavy ion collisions with PHENIX - Torsten Dahms - Stony Brook University February 8 th, 2008 Real photons at low p.
Oct 6, 2008Amaresh Datta (UMass) 1 Double-Longitudinal Spin Asymmetry in Non-identified Charged Hadron Production at pp Collision at √s = 62.4 GeV at Amaresh.
Transverse Spin Physics at RHIC M. Grosse Perdekamp (University of Illinois and RBRC) International Workshop on Semi-Inclusive Reactions and 3D-Parton.
Proton Polarimetry at RHIC K. Oleg Eyser for the CNI polarimeter group Newport News, VA, October 25, 2013.
Spin Physics at RHIC PHENIX 1.Physics Motivation 2.Accelerator and Detector 3.Result from Run2/Run3 4.What we can do? Atsushi Taketani RIKEN RIKEN Brookhaven.
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
PHENIX Measurement of Parity-Violating Single Spin Asymmetry in W Production in p+p Collisions at 500 GeV Stephen Pate (for the PHENIX Collaboration) New.
Transverse Single-Spin Asymmetries Understanding the Proton: One of the fundamental building blocks of ordinary matter! Spin decomposition of proton still.
MPC-EX hardware design and capability The MPC-EX detector system is an extension of the existing Muon Piston Calorimeters (MPCs) of the PHENIX experiment.
Longitudinal Spin Asymmetry and Cross Section of Inclusive  0 Production in Polarized p+p Collisions at 200 GeV Outline  Introduction  Experimental.
N. Poljak, FPD++ N. Poljak, U. of Zagreb.
Proton Spin Physics: Current Status and Forthcoming Results (Experiment) Christine Aidala Columbia University.
Measurement of the Double Longitudinal Spin Asymmetry in Inclusive Jet Production in Polarized p+p Collisions at 200 GeV Outline Introduction RHIC.
Gluon Polarization Errors at PHENIX Spin Discussion Mar. 24 & Apr. 14, 1998 Yuji Goto, RIKEN.
Los Alamos National Lab Christine A. Aidala September 28, 2010 SPIN 2010, Juelich, Germany Cross Section and Double-Helicity Asymmetry in Charged Hadron.
Oct. 12, 2007 Imran Younus k T Asymmetry in Longitudinally Polarized p +p Collisions at PHENIX.
Thomas Roser Snowmass 2001 June 30 - July 21, 2001 Proton Polarimetry Proton polarimeter reactions RHIC polarimeters.
Drell Yan Feasibility Study at IP2 L.C. Bland, BNL RSC Meeting, Iowa State U. 15 May 2010.
October 22, 2004 Single Spin Asymmetries at RHIC 1 F.Videbaek Physics Department, Brookhaven National.
Transverse Momentum Dependent Evolution in Proton-Proton Collisions Oleg Eyser RIKEN/BNL Research Center Workshop Emerging Spin and Transverse Momentum.
Spin Physics with PHENIX (an overview, but mainly  G) Abhay Deshpande Stony Brook University RIKEN BNL Research Center PANIC’11 at MIT July 28, 2011.
Inclusive cross section and single transverse-spin asymmetry of very forward neutron production at PHENIX Spin2012 in Dubna September 17 th, 2012 Yuji.
Overview of A N DY L.C.Bland Brookhaven National Laboratory BNL Review of the A N DY Proposal 30 March 2012.
Gluon polarization and jet production at STAR Pibero Djawotho for the STAR Collaboration Texas A&M 4 June 2013.
Overview of the sea quark polarization measurements of PHENIX at RHIC DIS April 12, Rusty Towell Abilene Christian University on behalf of the PHENIX.
A N DY Status Commissioning with colliding beams L.C.Bland, for AnDY 27 March 2012 Time Meeting, BNL.
Future studies of TMDs Delia Hasch SIR05- International Workshop on Semi-inclusive reactions and 3D-parton distributions May 18-20, 2005; Jefferson Lab,
A N DY Status Commissioning with colliding beams (p  +p  at  s=500 GeV) L.C.Bland, for AnDY 19 April 2011 Time Meeting, BNL.
Plans for nucleon structure studies at PANDA
Recent Results on Proton Helicity Structure Studies from PHENIX
Larisa Nogach Institute of High Energy Physics, Protvino
Spin Physics at RHIC Kieran Boyle (RBRC).
Transverse Spin Physics at PHENIX
fsPHENIX and Hadron Calorimeters
PHENIX Transverse-Spin Physics
Kazuya Aoki For the PHENIX Collaborations. Kyoto Univ. / RIKEN
Current status of RHIC Spin Program
Transverse Spin Physics at RHIC II
Presentation transcript:

» Drell RHIC « Oleg Eyser ECT* Workshop on Drell Yan Physics and the Structure of Hadrons May 21-25, 2012, Trento, Italy

RHIC as Polarized Proton Collider AGS LINAC BOOSTER Polarized Source Spin Rotators 200 MeV Polarimeter Absolute Polarimeter (H jet) P HENIX B RAHMS / AnDY S TAR Siberian Snakes Spin Flipper RHIC pC Polarimeters Rf Dipole AGS Internal Polarimeter AGS pC Polarimeter Strong Snake Partial Snake Helical Partial Snake

200 GeV 500 GeV 3 transverse trans. long./trans.

STAR The STAR Detector 4

The STAR detector FPD+ FMS 5

The PHENIX Detector 6

New micro-vertex detectors o VTX & FVTX o Commissioned in runs 11 & 12 o Resolution o Hit < 25 μm o DCA < 200 μm Expected improvement on J/Ψ

Drell-Yan Spectrum 8

Drell-Yan Feasibility with PHENIX PHENIX projection: √s = 510 GeV Integrated luminosity 50 pb -1 PHENIX muon arms: 1.2 < η < 2.2 9

Polarized Drell-Yan with PHENIX? arxive: (Lu, Ma, Zhu) projection 10

Conclusion?  RHIC can provide luminosities to measure Drell-Yan production  Projected luminosities in upcoming run ≈ 300 pb -1  Beam polarizations are >50%  Will have longitudinal polarization in the near future… highest priority is the W-program  What are the important questions for a compelling physics program? “We have an infinite number of questions that we can work on.” Penn Jillette

The Proton Spin Structure Polarization experiments –H–Helicity Valence quarks Sea quarks Gluons –T–Transversity What is the connection to orbital angular momentum? momentum DSSV arXiv:

Transverse Asymmetries Transversity √s = 62.4 GeV Sivers uu dd u/d 1:0 2:1 1:1 √s = 4.9 GeV√s = 6.6 GeV√s = 19.4 GeV

Initial state interaction Sivers effect Initial state interaction Sivers effect Final state interaction Collins effect Final state interaction Collins effect Hard Scattering Transversity Twist-3 Hard Scattering Transversity Twist-3 Transverse Asymmetries  Inclusive A N (central/forward)  Jet/hadron correlations (back-to-back)  Interference fragmentation functions  Jet correlations/structure  Drell-Yan Comparison with siDIS (sign change) Map out the kinematic range Upgrades Upgrade plans 14

Solid factorization No fragmentation – Direct correlation of intrinsic transverse quark momentum to the proton spin Fundamental QCD test – Sign of asymmetry compared to SIDIS A N (DY) 15 PHENIX muon arms

Kinematics 16

RHIC  Demonstrate that large-x F low-mass di-leptons from the Drell-Yan process can be discriminated from background in √s=500 GeV p ↑ +p collisions  Measure the analyzing power for Drell-Yan production with sufficient statistical precision to test the theoretical prediction of a sign change for DY in relation to semi-inclusive deep inelastic scattering  Determine if detection of Drell-Yan di-leptons requires magnetic analysis ⇒ critical for future facilities at RHIC

Reminder AGS LINAC BOOSTER Polarized Source Spin Rotators 200 MeV Polarimeter Absolute Polarimeter (H jet) P HENIX B RAHMS / PP2PP S TAR Siberian Snakes Spin Flipper RHIC pC Polarimeters Rf Dipole AGS Internal Polarimeter AGS pC Polarimeter Strong Snake Partial Snake Helical Partial Snake AnDY AnDY Letter of intent (2010): Feasibility test of large rapidity Drell-Yan production

AnDY - Staging HCal + newly constructed BBC at IP2 to establish the impact of a 3 rd IR operation and to demonstrate the calibration of HCal to get first data constraints on charged hadron backgrounds HCal + EmCal + neutral/charge veto + BBC for zero- field data sample with L int ≈150 pb -1 and P≈50% to observe di-leptons from J/ψ, Υ, and intervening continuum. HCal + EmCal + neutral/charge veto + BBC + split- dipole for data sample with L int ≈ 150 pb -1 and P=50% to observe di-leptons from J/ψ, Υ, and intervening continuum to address whether charge sign discrimination is required Polarized proton runs at √s = 500 GeV 19

AnDY 20

AnDY performance 6.5 pb -1 different crossing angles Successful collisions at AnDY Minimal impact on other IPs Proximity association with ECal HCal energy scale ≈ 5% 21

AnDY performance Cluster pair mass (including BBC MIP) ≈120 J/Ψ out of 3.5·10 7 triggers Finalize the jet-energy scale ≈ 20% of hadronic corrections needed 22

From di-leptons to Drell-Yan Expect > 4 σ measurement of A N (assume P ≈ 50% and A N ≈ 0.1) Expect > 4 σ measurement of A N (assume P ≈ 50% and A N ≈ 0.1) 23 SIDIS kinematics 12 < p z < 75 GeV/c p T < 2 GeV/c ≈10 4 di-electrons / 100 pb -1

Background from QCD jets 24 Fast MC for long. shower profile based on 0.5 pb -1 full GEANT simulation Energy fraction cut: Remaining electrons 99% Hadron rejection 82% Preshower (1 cm Pb) Remaining electrons 98% Reject hadron 86% Scintillator Reject photons 98% Remaining electrons 86%

Polarized RHIC It is generally acknowledged that the scientific merit of the program is very high. The AnDY timeline is very tight and the manpower is limited. Are there other long-term options? – PHENIX upgrade – STAR upgrade

Cross sections  Partonic luminosities increase with √s  Large A N for y > 2 (more forward than current PHENIX muon arms) 26

Drell-Yan lepton pairs Leptons have high energy Energies are very correlated 27

All charged particle pairs between J/  and  Hadron suppression needed at 500 GeV  s = 200 GeV  s = 500 GeV QCD 2→2 background 28

Electrons and positrons from hard QCD processes are uncorrelated – Opening angles are comparable to Drell Yan: detector acceptance – Lepton energies of Drell Yan decays are large – Energy cut removes QCD background at small m inv – Large masses in QCD background favor mid-rapidity – Energy asymmetry has not been instrumented yet Background rejection 29

Parametrized fast MC for detector smearing Drell Yan signal – 3 – 10 GeV/c 2 Energy cut – E 1,2 > 2 GeV Forward rapidities – Effectively no background left – Statistically limited – Drell Yan for m inv < 3 GeV/c 2 not physical (PYTHIA settings) Drell-Yan at forward rapidities 30

PHENIX future To be described in an MIE $ 20M Needs additional funding 31

STAR future DX magnet FMS HCAL Threshold RICH for electron ID Magnetic field and tracker How important is charge sign? Compact E+Hcal W powder scintillator? beam pipe 32

Summary RHIC can deliver luminosities for Drell-Yan measurements – Would be the first polarized Drell-Yan production in collider – Current W-program uses longitudinal polarization – Feasibility studies will use data from run 11++ PHENIX & STAR are working on long-term upgrade plans that include Drell-Yan – More simulations needed for detector layout and design – AnDY as feasibility test has achieved parts of its goals at large rapidities

34

 A. Prokudin, Z.-B. Kang –arXiv: [hep-ph]  Input HERMES COMPASS STAR  0  Functional form similar to DSSV SIDIS PP d quark Sivers u quark Sivers  Need to map out Drell-Yan Sivers over a wide kinematic range 35