Cumulus Forced; pushed upward by external forces, i.e. lifting by surface convergence, topography etc. Active; growing upward from self-forcing, i.e. buoyancy,

Slides:



Advertisements
Similar presentations
Introduction Irina Surface layer and surface fluxes Anton
Advertisements

Section 2: The Planetary Boundary Layer
Free Convection: Overview
Hurricanes and climate ATOC 4720 class22. Hurricanes Hurricanes intense rotational storm that develop in regions of very warm SST (typhoons in western.
Orographic Storms in the Southern Europe Heavy precipitating storms resulting from proximity to Mediterranean Sea Fall season particularly dangerous because.
Seeder-Feeder Mechanism When topography is too shallow to force a pure orographic cloud, a seeder-feeder mechanism may operate: –Ice crystals produced.
Geostrophic Adjustment Recall winds adjust to mass for scales larger than L R and mass adjust to wind for scales smaller than L R. In mid-latitude squall.
Tephigrams ENVI1400 : Lecture 8.
Atmospheric Analysis Lecture 3.
D A C B z = 20m z=4m Homework Problem A cylindrical vessel of height H = 20 m is filled with water of density to a height of 4m. What is the pressure at:
Baroclinic Instability in the Denmark Strait Overflow and how it applies the material learned in this GFD course Emily Harrison James Mueller December.
NATS 101 Lecture 12 Vertical Stability
THE HADLEY CIRCULATION (1735): global sea breeze HOT COLD Explains: Intertropical Convergence Zone (ITCZ) Wet tropics, dry poles Problem: does not account.
Temperature, Buoyancy, and Vertical Motion Temperature, Pressure, and Density Buoyancy and Static Stability Temperature “Lapse Rates” Rising & Falling.
Review of the Boundary Layer
Observed Structure of the Atmospheric Boundary Layer Many thanks to: Nolan Atkins, Chris Bretherton, Robin Hogan.
Second MSC/COMET Winter Weather Course, Boulder, Slantwise Convection: An Operational Approach The Release of Symmetric Instability.
Class #13 Monday, September 27, 2010 Class #13: Monday, September 27 Chapter 7 Global Winds 1.
Thermal and shear instabilities: Introduction Kelvin-Helmholtz (K-H) waves & horizontal convective rolls (HCRs)
AOSS 401, Fall 2006 Lecture 8 September 24, 2007 Richard B. Rood (Room 2525, SRB) Derek Posselt (Room 2517D, SRB)
II. Synoptic Atmospheric Destabilization Processes Elevated Mixed Layer (EML) Synoptic Lifting Dynamic Destabilization Differential Advection.
FREE CONVECTION Nazaruddin Sinaga Laboratorium Efisiensi dan Konservasi Energi Jurusan Teknik Mesin Universitas Diponegoro.
Thermodynamics, Buoyancy, and Vertical Motion
Thermodynamics, Buoyancy, and Vertical Motion Temperature, Pressure, and Density Buoyancy and Static Stability Adiabatic “Lapse Rates” Convective Motions.
The simplest theoretical basis for understanding the location of significant vertical motions in an Eulerian framework is QUASI-GEOSTROPHIC THEORY QG Theory:
1 Introduction to Isentropic Coordinates: a new view of mean meridional & eddy circulations Cristiana Stan School and Conference on “the General Circulation.
Tropical Meteorology I Weather Center Event #4 Tropical Meteorology What is Tropical Meteorology? – The study of cyclones that occur in the tropics.
PRECIPITATION PROCESSES AT FRONTS. POSSIBLE CONDITIONS PRESENT AT FRONT 1.Air ahead of the front is stable to all forms of instability Forcing mechanism.
Fronts and Frontogenesis
Cumulus Clouds. What goes on inside a cumulus cloud?
Rossby Wave Two-layer model with rigid lid η=0, p s ≠0 The pressures for the upper and lower layers are The perturbations are 
Boundary Layer Convection Convection in the boundary layer occurs to transport heat moisture, and momentum from surface to free atmosphere Two common scenarios:
Momentum Equations in a Fluid (PD) Pressure difference (Co) Coriolis Force (Fr) Friction Total Force acting on a body = mass times its acceleration (W)
Condensation in the Atmosphere The atmosphere contains a mixture of dry air and a variable amount of water vapor (0-4% or 0-30 g/kg) An air parcel is said.
Richard Rotunno National Center for Atmospheric Research, USA Fluid Dynamics for Coastal Meteorology.
USE THESE VALUES. e(T) = e s (T Dew ) PRACTICE WITH STABILITY.
1 Equations of Motion Buoyancy Ekman and Inertial Motion September 17.
Sound speed in air: C S ∝ [T] 1/2 T[K] C S [m/s] Conv. Div. tendency of pressure & density >0
The Linear and Non-linear Evolution Mechanism of Mesoscale Vortex Disturbances in Winter Over Western Japan Sea Yasumitsu MAEJIMA and Keita IGA (Ocean.
Paul Markowski Department of Meteorology, Penn State University
Space Science: Atmospheres Part- 8
ATS/ESS 452: Synoptic Meteorology
Key Terms and Concepts ELR--Environmental Lapse Rate 5°C-6.5°C/1000 m – temperature of the STILL air as you ascend through the troposphere. ALR--Adiabatic.
Overview of Tropical Cyclones AOS 453 April 2004 J. P. Kossin CIMSS/UW-Madison.
Section 8 Vertical Circulation at Fronts
Conservation of Salt: Conservation of Heat: Equation of State: Conservation of Mass or Continuity: Equations that allow a quantitative look at the OCEAN.
Composition/Characterstics of the Atmosphere 80% Nitrogen, 20% Oxygen- treated as a perfect gas Lower atmosphere extends up to  50 km. Lower atmosphere.
Observed Structure of the Atmospheric Boundary Layer
Potential temperature In situ temperature is not a conservative property in the ocean. Changes in pressure do work on a fluid parcel and changes its internal.
 p and  surfaces are parallel =>  =  (p) Given a barotropic and hydrostatic conditions, is geostrophic current. For a barotropic flow, we have and.
Lecture 18 Lake Effect Storms. Homework Due Friday, December 12, 2014 TYU Ch 13: 2,4,,6, 7,18 ; TYPSS 3 TYU Ch 16: 1, 2, 3, 7, 11 ; TYPSS 2 Extra Credit,
Cumulus Clouds. Instabilities Resulting in Vertical Overturning 1.Thermal Instability (Assuming uniform vertical pressure gradient) a) Static (Parcel.
Ocean Currents. The water in the ocean is constantly moving The water in the ocean is constantly moving Broad bands of ocean water that flow in one direction.
Atmospheric Dynamics Suzanne Gray (University of Reading) With thanks to Alan Gadian and Geraint Vaughan. Basic dynamical concepts.
Cloud Formation  Ten Basic Types of Clouds (Genera): l High: Ci, Cs, Cc l Middle: As, Ac l Low: St, Ns, Sc l Clouds of Great Vertical Extent: Cu, Cb 
Meteo 3: Chapter 8 Stability and Cloud Types Read Chapter 8.
Advanced Dynamical Meteorology Roger K. Smith CH 05.
For a barotropic flow, we have is geostrophic current.
Condensation in the Atmosphere
ATM S 542 Synoptic Meteorology Overview
Hurricane Vortex X L Converging Spin up Diverging Spin down Ekman
anelastic: Boussinesque: Homework 1.1 …eliminates sound waves
Downdraft Storms Lecture 12a
4. Atmospheric transport
Lake Effect Storms.
Case Study in Conditional Symmetric Instability
Stability and Cloud Development
Richard B. Rood (Room 2525, SRB)
EART30351 Lecture 2.
Presentation transcript:

Cumulus Forced; pushed upward by external forces, i.e. lifting by surface convergence, topography etc. Active; growing upward from self-forcing, i.e. buoyancy, shear induced overturning Passive; No longer growing, residual cloud

Cumulus Clouds Shallow Cumulus (cumulus, scatted cumulus, strato- cumulus) –Depth small compared to scale height of troposphere, i.e. –Usually confined to Planetary Boundary Layer (PBL) –Typically non-precipitating –Surface friction plays critical role to organization Deep Cumulus (congestus, cumulonimbi) –Depth comparable to scale height of troposphere –Precipitating –Friction plays secondary role to organization

Instabilities Resulting in Cumulus Three basic atmospheric flow instabilities: 1.Inertial Instability: Against horizontal inertial balance, i.e. horizontal pressure gradient, coriolis and centrifugal force 2.Static Instability (absolute instability): Against vertical hydrostatic balance, i.e. vertical pressure gradient and gravity force 3.Symmetric Instability: Against inertial balance on an isentropic (constant potential temperature) surface, i.e. isentropic pressure gradient force, coriolis and isentropic centrifugal force (a combination of 1 and 2! Think about this!)

Symmetric Instability

Instabilities Resulting in Cumulus Conditional, i.e. only if saturated: –(CI) Conditional (static) instability –(CSI) Conditional Symmetric Instability Frictional, i.e. in the PBL: –Rayleigh- Bernard –Inflection Point Instability (KH) Kelvin-Helmholtz –Gravity Wave Resonance

Kelvin-Helmholtz Instability Small perturbation tends to amplify by the advection of vorticity (shear => curvature) Resistance to growth of wave by static stability, i.e. Brunt-Vaisalla Frequency, N Condition for instability:

Rayleigh-Benard Instability Results when a thin layer of fluid is subjected to heat fluxes from top or bottom of layer Forces: –Promoting overturning: heat flux –Resisting overturning: friction

Rayleigh Number Non-dimensional number depicting ratio of heat flux or buoyancy forcing to frictional resistance: –h is fluid depth (m) –γ is the lapse rate (K/m) –α e is the coefficient of expansion –D  is the viscosity (m 2 /s) –K is the thermal conductivity (K m/s)

Condition for Rayleigh-Benard Instability Linearize Navier stokes equations Assume wave solution: Then the condition for instability is:

Condition for Rayleigh-Benard Instability Instability for any number of combinations of k and l including: –Cells –Rolls The value that Ra must exceed is a function of horizontal wave number

Most Unstable Rayleigh-Benard Mode Differentiate stability condition w.r.t. horizontal wave number and set to zero to obtain condition for maximum (growth rate): If for simplicity we assume and we assume square cells where S is the spacing, then a ratio of horizontal spacing to depth S:h=3:1 is implied.

Hexagonal form to Rayleigh Benard Convection

Organization of Boundary Layer Convection Cellular (Rayleigh-Benard) –Closed Cells –Open Cells Linear –Wind Parallel (Rayleigh-Benard) –Inflection Point (Kelvin-Helmholtz) –Gravity Wave Resonance Spoked (Rayleigh-Benard) –Actinae

Cellular Convection

Mesoscale Cellular Convection (MCC)

Linear Convection

Open, Closed and Actinae Convect ion

Linear, Roll-type Convection

Hexagonal Cells

Cellular Convection Also known as mesoscale Cellular Convection (MCC) Two types: –Type I: typically to the east of continents during the winter season over warm ocean currents (driven by heating from below) –Type II: Occur during the summer to the west of continents over cool ocean currents (driven by cooling from above)

Cellular Convection Open vs. closed cells –Wintertime cold air masses that advect from continents out over warm ocean currents produce convective marine PBLs. – Cold air masses that advect from continents out over warm ocean currents produce convective marine PBLs. –The convective cloudiness that evolves off-shore occurs as bands or streets and gives way downstream to chains of open cells and then farther out to sea there are eventually patterns of open and closed hexagonal convection

Cellular Convection Open vs. closed cells –This is the natural order to expect as unstable convective PBLs are growing and near steady- state can develop in time with sufficient heating (and farther out to sea, which also finds the decreasing effects of vertical shear in the horizontal wind (<10 -3 s-1))

Cellular Convection Actinae spoke-like cellular convection formations –Actinae do not occur in Type I CTBLs, because the process is too dynamic. –Actinae only occur in Type II CTBLs. The reason being that in the Rayleigh-Prandtl regime stability diagram there is a very small space (a narrow range of conditions that will support actinae). –In the Type II case the atmosphere is functioning in such a slow dynamic mode that the actinae can be achieved. It is easy to produce the actinae in the laboratory.

Cellular Convection Actinae spoke-like cellular convection formations –The spoke-pattern convection is a geometric plan-form that represents a transition between the open and closed cellular convection patterns. It is a transitional pattern and that is why it is always found between regions of open and closed cells. –In thermal convection (both theory and lab results) you can develop 6-arm patterns (linear mode for weakly supercritical Rayleigh) to 12-arm patterns (non-linear mode). –Rotation would be no surprise because background vertical vorticity gets stretched and the convective overturning (especially during transition from open to closed structure) produces horizontal vortex tubes as well.

Actinae