Ultrahigh-resolution spin-resolved ARPES of novel low-dimensional systems Seigo Souma Tohoku University May 31, 2010 A. Takayama, K. Sugawara, T. Sato,

Slides:



Advertisements
Similar presentations
Int. Conf. II-VI 2007 Coherent Raman spectroscopy of Cd 1-x Mn x Te quantum wells Lowenna Smith, Daniel Wolverson, Stephen Bingham and J. John Davies Department.
Advertisements

Quasiparticle Scattering in 2-D Helical Liquid arXiv: X. Zhou, C. Fang, W.-F. Tsai, J. P. Hu.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
Aretouli E. Kleopatra 20/2/15 NCSR DEMOKRITOS, Athens, Greece
Atsuhiko Ochi Kobe University 4/10/ th RD51 collaboration meeting.
Influence of Substrate Surface Orientation on the Structure of Ti Thin Films Grown on Al Single- Crystal Surfaces at Room Temperature Richard J. Smith.
Topological Superconductors
Spin dependent tunneling in junctions involving normal and superconducting CDW metals A.M. Gabovich and A.I. Voitenko (Institute of Physics, Kyiv, Ukraine)
ARPES (Angle Resolved PhotoEmission Spectroscopy) Michael Browne 11/19/2007.
The electronic structures of 2D atomically uniform thin film S.- J. Tang, T. Miller, and T.-C. Chiang Department of Physics, University of Illinois at.
Spin transport in spin-orbit coupled bands
Hiroyuki Inoue Electric manipulation of spin relaxation in a film using spin-Hall effect K. Ando et al (PRL in press)
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Experimental Techniques and New Materials F. J. Himpsel.
Spin Hall Effect induced by resonant scattering on impurities in metals Peter M Levy New York University In collaboration with Albert Fert Unite Mixte.
X-ray Polarization as a Probe of Strong Magnetic Fields in X-ray Binaries Shane Davis (IAS) Chandra Fellows Symposium, Oct. 17, 2008.
Adventures and Opportunities with Ted Madey using Synchrotron Radiation Photoemission John E. (Jack) Rowe, Physics Department, North Carolina State University.
Observation of magnetic domains in LSMO thin films by XMCD-PEEM M. Oshima A, T. Taniuchi A, H. Kumigashira A, H. Yokoya B, T. Wakita C, H. Akinaga D, M.
Photoluminescence and lasing in a high-quality T-shaped quantum wires M. Yoshita, Y. Hayamizu, Y. Takahashi, H. Itoh, and H. Akiyama Institute for Solid.
Photoluminescence and lasing in a high-quality T-shaped quantum wires M. Yoshita, Y. Hayamizu, Y. Takahashi, H. Itoh, and H. Akiyama Institute for Solid.
National University of Singapore
Electronic Structure of A IV B VI · m A 2 V B 3 VI (A IV = Ge,Sn,Pb; A V = Bi,Sb; B VI = Te,Se; m=1-3) Topological Insulators S.V. Eremeev, T.V. Menshchikova,
 stem electron density ~ 1×10 11 cm -2  Gate Voltage ( Vg ) 0.0 ~ 0.8V  wire electron density 0 ~ 4×10 5 cm -1  arm electron density 0 ~ 1.3×10 11.
韓 政勳 (成均館大) Orbital Rashba Effect & Its Implications Jung Hoon Han
Silvia Tognolini First Year Workshop, 15 October 2013, Milan Investigating graphene/metal interfaces by time - resolved non linear photoemission.
Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3.
Photoemission Spectroscopy Dr. Xiaoyu Cui May Surface Canada workshop.
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Berry Phase Effects on Electronic Properties
Final Examination April 18 th, 2006 Dominic A. Ricci Department of Physics University of Illinois at Urbana-Champaign Photoemission Studies of Interface.
Spectroscopy of Nanostructures
VUV14, July 23, 2004 Electronic structures of Ca induced one-dimensional reconstructions on a Si(111) surface Kazuyuki Sakamoto Dept. Phys., Tohoku University,
1 光電子分光でプローブする 遷移金属酸化物薄膜の光照射効果 Photo-induced phenomena in transition-metal thin films probed by photoemission spectroscopy T. Mizokawa, J.-Y. Son, J. Quilty,
The 7 th Day After First Light Yu He SC Meeting Jul 25, 2013 Milestones Early Guinea Pigs PROBLEMS! Metal Cuprate Topological Insulator Pnictide FeSe Film.
The physics of electron backscatter diffraction Maarten Vos AMPL, RSPHYSSE, Australian National University, Acton 0200, Canberra Aimo Winkelmann Max Planck.
Fig.1. Schematic view of the Photoemission (top) and Inverse Photoemission (bottom) processes. Fig.2. PES and IPES spectra of polycrystalline silver, plotted.
Detection of Spin-Polarized Electrons:
Infrared and magneto- optical studies of topological insulators Saša V. Ðorđević Department of Physics.
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
Electron Energy Loss Spectroscopy (EELS) Suggested Reading: Used electron spectrometer Used TEM Review of theory for elastic + inelastic scattering Examples.
Electrons on the brink: Fractal patterns may be key to semiconductor magnetism Ali Yazdani, Princeton University, DMR Princeton-led team of scientists.
Space Charging in 11 eV Yu He SC Meeting Jul 25, 2013 Numbers and Conventions UV Power vs 11eV Power EF Position and Width vs ‘Counts’ Questions to be.
Past and Future Insights from Neutron Scattering Collin Broholm * Johns Hopkins University and NIST Center for Neutron Research  Virtues and Limitations.
Distinct Fermi Surface Topology and Nodeless Superconducting Gap in a (Tl 0.58 Rb 0.42 )Fe 1.72 Se 2 Superconductor D. Mou et al PRL 106, (2011)
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
Topological Insulators Effects of spin on transport of electrons in solids.
The Puzzling Boundaries of Topological Quantum Matter Michael Levin Collaborators: Chien-Hung Lin (University of Chicago) Chenjie Wang (University of Chicago)
Electrons in Solids Simplest Model: Free Electron Gas Quantum Numbers E,k Fermi “Surfaces” Beyond Free Electrons: Bloch’s Wave Function E(k) Band Dispersion.
Dirac’s inspiration in the search for topological insulators
Thermal Strain Effects in Germanium Thin Films on Silicon Travis Willett-Gies Nalin Fernando Stefan Zollner.
Lattice gauge theory treatment of Dirac semimetals at strong coupling Yasufumi Araki 1,2 1 Institute for Materials Research, Tohoku Univ. 2 Frontier Research.
Topological Insulators
Search for New Topological Insulator Materials April 14, 2011 at NTNU Hsin Lin Northeastern University.
Dept. of Physics, Yonsei U
X-ray photoelectron spectroscopy (XPS)
Angle-resolved photoemission spectroscopy (ARPES)
Search for Novel Quantum Phases in
Electronic structure of topological insulators and superconductors
Band structure: Semiconductor
Gauge structure and effective dynamics in semiconductor energy bands
Electronic properties in moiré superlattice
One Step Photoemission from Ag(111)
Rashba splitting of graphene on Ni, Au, or Ag(111) substrates
Adjustable magnetization in codoped topological insulator Bi2Se3
Co-Al 시스템의 비대칭적 혼합거동에 관한 이론 및 실험적 고찰
Fig. 3 Band dispersions along on the KHgSb (010) surface.
Chapter 16: Electron Diffraction
Surface analysis techniques part I
Presentation transcript:

Ultrahigh-resolution spin-resolved ARPES of novel low-dimensional systems Seigo Souma Tohoku University May 31, 2010 A. Takayama, K. Sugawara, T. Sato, and T. Takahashi Collaborators: 1 WS10-ETLODs, Valencia-Spain

Anomalous electron spin phenomena Spin dependence of electronic structure Rashba effect Spintronics Topological insulator Bi 2 Te 3 Y.L.Chen et al., Science 325 (2009) 178. Spin-orbit interaction High-resolution spin-resolved ARPES Electronic-field induced spin-current Rashba term Spin switch via S.O. interaction Edge state (surface state) Time reversal invariant E(k,↑) = E(-k,↓) 2

Spin-splitting of surface Rashba effect ∇ V= (0, 0, E z ) Surface Rashba effect Spin-orbit interaction surface potential Effective magnetic field spin-resolved ARPES Time reversal symmetry E(k,↑) = E(-k,↓) 3 Space inversion symmetry E(k,↑) = E(-k,↑)

Angle-resolved PES (ARPES) e - freedom Energy Momentum 4

Detection of electron spin is difficult !! Efficiency of instrument goes down by 3-4 order Energy Resolution 100 meV Spin-resolved ARPES e - freedom Energy Momentum Spin 5 Mott scattering Mini Mott Detector 25 keV

c 6 Recent spin-resolved ARPES studies VLEEDMott detector (retarding-type) (high-energy type)  E = 30 meV  E = 70 meV (Fe(001)p(1x1)-O) Sb(111) Bi 1-x Sb x (x=0.13) [9] A. Nishide et al., PRB 81 (2010) (R). [8] T. Okuda et al., RSI 79 (2008) [1] K. Iori et al., RSI 77 (2006) [2] S. Qiao et al., RSI 68 (1997) [3] T. Kadono et al., APL 93 (2008) [1,2] [3] Au(111) Mott scattering E K = 25 keV Mott scattering E K = 60 keV Electron diffraction E K = 6 eV [6] M. Hoesch et al., PRB 69 (2004) (R). [5] M. Hoesch et al., JESRP 124 (2002) 263. [7] R. Bertacco et al., RSI 73 (2002) 3867.[4] V. N. Petrov et al., RSI 68 (1997) [4,5] [6] [9] [7,8]

High-resolution spin-resolved photoemission spectrometer 7

A B C D Spin-resolved ARPES system 8 PzPz PyPy (A,B) (C,D) Spin polarization x y z Spin-integrate ARPES Energy Angle Spin-resolved ARPES spin up spin down

Energy resolution at MCP Au metal T = 3.5 K Nb superconductor simulation BCS function Tc = 9.2 K Gap size  = 1.5 meV Broadening  = 200  eV 900  eV T = 3.5 K simulation FD function Energy resolution at MCP Xe I eV 9

High-resolution spin-resolved photoemission spectrometer 10 S. Souma et al., RSI 78 (2007) Xe I photons8-11 eV Intensity 2 x photons/sec Operation pass energy Ep = 1,2,5 eV Energy Mott = 8-40 meV Ep: pass energy Energy Mott ~ 0.008Ep eV

Side view High-resolution spin-resolved photoemission spectrometer 11

Discharge problem Au4f ch1 ch2 12 ch2 ch1

Solving for discharge of Mott detector Channeltron Scattering chamber Feed through Safety cover To HV supply Au target Focus cup Channeltron Scattering chamber Focus cup V 2200 V 1300 V Spark - Solutions - 1. Re-polishing of high voltage electrodes 3. Washing all parts 4. Baking 5. Conditioning of electrode’s surface by applying HV Field emission BG noise depends on voltage difference between the electrodes Roughness of surface 2. Coating of electrodes with TiC , Noise at channeltron

Test measurement with gold sample ch A ch B ch C ch D Au He I  T=300K Ep 10eV ch A ch B ch C ch D Au T=10K Ep 1eV Xe I eV 14 Energy Mott = 8 meV

Peculiar surface states of group-V semimetals Surface Rashba effect with S.O. without S.O. Yu. M. Koroteev et al., PRL 93 (2004) semimetal Surface peculiar metal Bi, Sb bulk 15 Crystal structure of Bi

16 Previous spin-resolved ARPES studies Bi(111) film H. Hirahara et al., PRB 76 (2007)

In-situ preparation of Bi thin film on Si(111) Si (111) 7×7 Bi (111) 1×1 LEED substrate Flash annealing Bi thin film (80ML) epitaxially grown on Si(111) surface 17

ARPES spectra of Bi(111) surface surface BZ bulk BZ (111) Xe I (8.436 eV) T = 30 K Experiment 18

Band structure of Bi(111) surface 19

Spin-integrate band structure of Bi(111) surface 20

Binding Energy (eV) EFEF Wave vector k x (Å -1 ) Electronic structure near E F of Bi(111) surface Wave vector k x (Å -1 ) Wave vector k y (Å -1 ) hole pocket electron pocket hole pocket electron pocket 21

Spin-resolved ARPES of Bi(111) surface Binding Energy (eV) EFEF B  Wave Vector k x (Å -1 ) y z up spin down spin z direction Intensity (arb. units) Binding Energy (eV) EFEF up spin down spin Intensity (arb. units) y direction

Binding Energy (eV) EFEF Wave Vector k x (Å - 1 ) Problem in Bi(111) surface state Time reversal symmetry E(k,↑) = E(-k,↓) Degeneracy of surface band at  (k=0) point Sb(111) Bi(111) Bi(111): surface band is unclear at  due to bulk band projection ARPES on Sb(111) same crystal structure no bulk projection at  near E F 23

Band structure near E F of Sb(111) surface 24 K. Sugawara et al., PRL 96 (2006)

Band structure near E F of Sb(111) surface 25 K. Sugawara et al., PRL 96 (2006)

Surface band of Sb(111) at  point 2nd derivative 26 K. Sugawara et al., PRL 96 (2006)

Spin-resolved ARPES spectra of Sb(111) spin up spin down Bulk band Surface band 27 K. Sugawara et al., PRL 96 (2006)

SUMMARY Spin-resolved ultrahigh-resolution ARPES study of Rashba effect on semi-metal surface Energy resolution  E= 8 meV Observation of Spin-splitting of surface band on Bi and Sb (111) Time reversal symmetry holds at  Surface Rashba effect on group-V semimetal surface