Presentation is loading. Please wait.

Presentation is loading. Please wait.

Electronic properties in moiré superlattice

Similar presentations


Presentation on theme: "Electronic properties in moiré superlattice"— Presentation transcript:

1 Electronic properties in moiré superlattice
科研費新学術領域研究「原子層科学」第3回全体会議  東京大学 2014年8月7日 Electronic properties in moiré superlattice in rotationally stacked atomic layers Mikito Koshino (Tohoku University) Collaborators: Pilkyung Moon (NYU Shanghai) 1

2 Outline Study the electronic properties of moiré suprlattice
using the effective continuum model 1) Rotationally stacked graphene + graphene 2) Graphene + h-BN 3) double wall carbon nanotubes From 2

3 Rotationally stacked bilayer graphene
Moiré period: Emerging in epitaxially grown graphene samples Berger et al., Science 312, 1191 (2006) Haas et al., PRL 100, (2008)

4 Effective continuum model
θ = 5.09° d = 0 Local structure AA   non-rotated bilayer   with shift d BA d AB d d is position-dependent: R… rotation by q

5 Effective continuum model
Interlayer coupling in uniform d Non-rotated bilayer A1 B1 A2 B2 Interlayer coupling in moire bilayer

6 Effective model for misoriented graphene-graphene
monolayer 1 Moon and Koshino,  Phys. Rev. B 87, (2013) monolayer 2 Interlayer interaction: : Moire reciprocal vectors the only parameter: See also: J. Lopes dos Santos, N. Peres, and A. Castro Neto, PRL 99, (2007), R. Bistritzer and A. MacDonald, PNAS 108, (2011), M. Kindermann and P. First,PRB 83, (2011).

7 Band structure of TBG Moon and Koshino, Phys. Rev. B 87, 205404 (2013)
LM u0 Folded band width 1/LM See also: S. Shallcross, S. Sharma, E. Kandelaki, and O. Pankratov, Phys. Rev. B 81, (2010). E. Morell, J. Correa, P. Vargas, M. Pacheco, and Z. Barticevic, Phys. Rev. B 82, (2010). tight-binding effective continuum

8 Graphene + h-BN (hexagonal Boron-Nitride)
C B N lattice constant mismatch Moire structure (even when q = 0) 1 1+e C. R. Dean et al., Nat. Nanotechnol. 5, 722 (2010). e = 1.8%

9 Same strategy graphene-graphene graphene+hBN rotation R expansion M
Moon and Koshino,  arXiv: v1 graphene-graphene graphene+hBN rotation R expansion M Displacement vector Moire reciprocal vector [ : graphene’s reciprocal vector]

10 Modeling Graphene + h-BN
Moon and Koshino,  arXiv: v1 E (eV) -1.40 3.34 B N C Graphene… Metal h-BN… Insulator EF EF C B N Interlayer interaction (same as graphene-graphene) Eliminate h-BN bases (2nd order perturbation) Effective potenial on graphene Other effective models of graphene + hBN: M. Kindermann, B. Uchoa, and D. Miller, PRB 86, (2012). J. Wallbank, A. Patel, M. Mucha-Kruczynski, A. Geim, and V. Fal'ko, PRB 87, (2013). J. Jung, A. Raoux, Z. Qiao, and A. H. MacDonald, arXiv: (2013).

11 Effective model for Graphene + h-BN
Moon and Koshino,  arXiv: v1 Effective potenial on graphene Scalar potential Dirac mass Vector potential

12 Band structure of graphene + hBN
Moon and Koshino,  arXiv: v1 hBN G Band structure Experiments B. Hunt, et al, Science 340, 1427 (2013). --- Gap opening at mini-Dirac points G. Yu, et al.,arXiv: (2014).

13 Band structure of graphene + hBN
Moon and Koshino,  arXiv: v1 hBN G Band structure Spectrum in B-field K, K’ --- Gap opening at mini-Dirac points --- Valley splitting at mini-Dirac points … due to inversion symmetry breaking

14 Bilayer graphene + hBN … inversion symmetry strongly broken
Moon and Koshino,  arXiv: v1 hBN G Band structure Spectrum in B-field K, K’ --- Gap opening at mini-Dirac points and Dirac points --- Valley splitting everywhere (almost no correlation between K and K’) … inversion symmetry strongly broken

15 Inversion symmetry breaking?
Moon and Koshino,  arXiv: v1 Monolayer graphene + hBN hBN G G + effective potential V effective potential: … not inversion symmetric Bilayer graphene + hBN hBN G G + effective potential G Strong inversion symmetry breaking

16 Experiments Bilayer graphene + hBN Monolayer graphene + hBN
C. R. Dean, et al Nature 497, 598 (2013) Monolayer graphene + hBN B. Hunt, et al, Science 340, 1427 (2013) See also, L. A. Ponomarenko, et al., Nature 497, 594 (2013).

17 Same strategy graphene-graphene graphene+hBN DWNT rotation R
Moon and Koshino,  arXiv: v1 graphene-graphene graphene+hBN DWNT rotation R expansion M rotation R + stretch M Displacement vector Moire reciprocal vector Koshino, Moon, Son In preparation [ : graphene’s reciprocal vector]

18 Summary --- Unified picture for the electronic properties of misoriented atomic layers: 1) Graphene + graphene 2) Graphene + h-BN 3) double wall carbon nanotube --- Develop the effective continuum model in the same theoretical basis --- Fractal spectrum and Quantum Hall effect in B-field [for 1) and 2)] 18


Download ppt "Electronic properties in moiré superlattice"

Similar presentations


Ads by Google