The Molecular Basis of Dark Vision Ghazwa Aldoori MECP/Cohort 8 Chem. 508 Dr. Michael Topp University of Pennsylvania.

Slides:



Advertisements
Similar presentations
The Eye and the Nervous System
Advertisements

Photoreceptors.
BBE/CNS 150 Lecture 13 Wednesday, October 29, 2014 Vision 1: Phototransduction and the Retina Bruce Cohen Kandel Chapter 26 1.
By Prof Dr. Soheir helmy. OUTER layer (protective) Middle layer (nutritive) iris cilliary body choroid Inner layer (retina-photosensetive)
How the eye sees Last time Anatomy of the eye Cells in the retina Rods and cones Visual receptors This time Visual receptors Visual transduction 1.
Rhodopsin Christen Eberhart. Rhodopsin Sequence The Eye Rhodopsin is found in the rods that are located in the eye Rods are composed of stacked disks.
Retinal Organization: Overview The eye’s most basic function: light detection The retina: a computational machine. Its job: to form an economical, precise.
ניורוביולוגיה ומדעי המח Introduction to Neurobiology Introduction to Sensory Systems The retina “From Neuron to Brain” Chapter 19: Transduction.
The Visual System Into. to Neurobiology 2010.
How the eye sees Last time Anatomy of the eye Rods and cones Visual receptors Color Vision This time Visual transduction Eye to brain 1.
University of Rochester, Institute of Optics SRJC May 12 th 2008 Younes Ataiiyan Physics 43.
The Eye: II. Receptor and Neural Function of the Retina
The Retina WALT That the retina contains millions of light sensitive cells That there are two types of light sensitive cell How an action potential is.
Rod & Cones Similar structure Outer segment – part closest to the outside of the eye Inner segment - part closest to the centre of the eye. Synapses with.
The Visual System General plan for visual system material: How the visual input is received and transduced at the retina by photoreceptors (rods and cones)
EYES!.
Structure of Rod and cones cells in retinas Dr. Samina Haq Dept of Biochemistry King Saud University.
Chapter 2: Introduction to the Physiology of Perception.
The Physiology of Vision part 2. Defects of image forming 1- Hyperopia ( farsightedness) : -Is a defect in which the eye-ball is shorter than normal.
Physics The cornea and lens refract light rays coming into the eye. The image projected onto the retina is upside down and backwards. If the focal plane.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
Chapter 2: The Beginnings of Perception. Figure 2-1 p22.
Sensory Receptors and the Eye
Sensory systems: Transduction Sensory cells are either 1. epithelial cells that are induced to specialize in performing some type of sensory transduction.
Sensory Transduction Olfaction Chemoreceptors Photoreceptors Vision
The Special Senses (1433) Vision – 2 Photo-transduction Professor A.M.A Abdel Gader MD, PhD, FRCP (London & Edinburgh) Professor of Physiology, College.
13.4 G Protein-Coupled Receptors That Regulate Ion Channels By: Meredith Clement.
Structure of the Human Eye Cornea protects eye refracts light Iris colored muscle regulates pupil size Pupil regulates light input Lens focuses images.
Midterm Marks posted by next Monday Today - Vision Structure / anatomy of eyes Photochemistry of pigment molecules Transduction of light energy to electrical.
RECEPTORS IN ANIMALS RICHARD LLOPIS GARCIA Adapted by MH A2 BIOLOGY.
The Eye & The Action (Receptor) Potential Packet #20 Chapter #49.
Spectral Tuning in Retinal Proteins h 11-cis all-trans.
Steve MacLean, Romualdo Ancog, Zoe Bowers, Elise Schellpfeffer (Clip Art)
SENSORY RECEPTION © 2012 Pearson Education, Inc..
Cylic GMP, NO, and Sensory Reception Lecture 28BSCI 420/421Nov cGMP & Vision 2. NO & cGMP 3. Olfaction.
Visual System II: Retinal Processing. Adequate Stimulus: A stimulus of a quality and of sufficient intensity to excite a sensory receptor. Adequate Stimulus.
Cell Signaling (BIO-203) Lecture 3. Types of G proteins Humans have 21 different G α subunits ( kDa) 6 G β subunits (35-35 kDa) 12 G γ subunits.
Vision 1. Structure of the eye Light passes through ganglion and bipolar cells, without distortion, to visual receptors –bipolar cells receive input.
TO SEE OR NOT TO SEE THAT IS THE QUESTION LIGHT  Travels in waves  ROYGBIV  Colors are different wavelengths of light.
Figure Figure Figure Posterior Cavity Space enclosed by lens, ciliary body, retina Filled with vitreous humor –jelly-like fluid –supports.
Visual pigments NS, Biochemistry Dr. Mamoun Ahram Third year, 2014.
Cell Signaling (BIO-203) Lecture 3. Types of G proteins Humans have 21 different G α subunits 6 G β subunits 12 G γ subunits Different G βγ function similarly.
The release, by one cell, of substances that transmit information to other cells. Definition:
Cell Signaling (BIO-203) Lecture 4. How the signaling terminates The G α -GTP state is short-lived because the bound GTP is hydrolyzed to GDP in minutes.
Student : Chen–Fung Tsen Advisor : Sheng-Lung Huang.
Physiology-II PHL-226 Physiology of vision
Unit 4: Respiration & coordination
Light Sensing and Vision
Sensation of light.
Function of the retina Annika Malmgren, 2009.
Eric Niederhoffer SIU-SOM
From: The loss of the PDE6 deactivating enzyme, RGS9, results in precocious light adaptation at low light levels Journal of Vision. 2008;8(1):10. doi: /
Visual Sensory System.
Neurophysiology and vison
The Special Senses Vision – 3 Photo-transduction
Journal #3: Which 3 cranial nerves monitor the tongue?
Communication Chapter 4:
Wednesday, 19 September Organisms respond to changes in their internal and external environments Eye Receptors • identify the pigments.
Some Most All Role of receptors WAL:
Vision Phototransduction of light By
Detection of light by mammals
Title: The nervous system 1
Structure of the Human Eye
Cell Signaling (BIO-203) Lecture 4.
Illustrated by: Carrie Wade & Esther Torres
Light & Vision: Accessory Structures → Receptor Cells
Computational Vision CSCI 384, Spring 2004 Lecture 4 The Retina
Eye: Retina and Neural Mechanisms.
Presentation transcript:

The Molecular Basis of Dark Vision Ghazwa Aldoori MECP/Cohort 8 Chem. 508 Dr. Michael Topp University of Pennsylvania

Questions Q1. How does the eye recover its sensitivity in the dark following exposure to bright light? Q2. What prevents the regeneration of the vision molecule Rhodopsin in patients with Congenital Stationary Night Blindness? Q 3. What have researchers reached as a possibility of a treatment for this disease?

The sense of vision is a complicated process that requires numerous components of the human eye and the brain to work together. By the end of this presentation, you will be familiar with the following:  The initial step of this powerful sense is carried out in the Retina of the eye. Retina has two kinds of photoreceptor cells, Rods and Cones.  The Fovea, located in the center of the Retina. Responsible for sharp center vision.  Phototransduction: The process of converting absorbed light by rods and cones into electrical signals.  Rhodopsin is the photosensitive pigment (a protein) in the Rod cells of the retina, responsible for the first event in the perception of light.

Detection of light bleaches Rhodopsin into its component parts which then necessitates its regeneration. Dark adaptation: how long it takes to recover vision in dim light. Any conformational change in Rhodopsin disallows its regeneration. One of the causes of conformational changes is the mutation of three amino acids present in this protein. How does this gives rise to Congenital Stationary Night Blindness (CSNB). Further research confirms persistent activation of Rhodopsin even in the absence of light is responsible for Rod cell death. Recent research findings show that gap junctions linking the Rod and Cone cells open and close as regulated by a 24-hour molecular clock located in the Retina.

Retina Contains Cone and Rod cells

Rod Cells Shape of outer segment is rod-like ~120 million rods per retina. Sensitive to dim light. Used in night/scotopic vision Responds to λ max of 498 nm Highest amount in the peripheral region of retina Shape of outer segment is cone-like ~ 7 million cones per retina. Sensitive to colors Three types respond to three different wave peaks: λ max 437nm, λ max 533nm and λ max 564 nm Highest amount in foveal region. Cone Cells

Fovea Located in the center of the Retina. Contains Cone cells only. Figure measures density curves for the rods and cones on the retina Show an enormous density of cones in the fovea centralis. Rod density increases in the peripheral area of the Retina. Approx. 50% of nerve fibers in the optical nerve carries information from the fovea Responsible for sharp center vision (i.e. reading and TV)

Rhodopsin in the Rod Outer segment of the Rod cell Contains membrane bound disks. These disks are densely packed with photo pigment Rhodopsin. Rhodopsin is a member of the super Family of seven-helix, G protein- coupled Receptor protein (Opsin) bound to a Light absorbing chromophore (11-cis retinal). A chromophore is a molecule that can absorb light at a specific wavelength. This 11-cis-retinal chromophore absorbs 1 photon per 200 fs. This one photon is enough to isomerizes11-cis retinal to all trans.

Brief review What happens to the link between Opsin and the chromophore upon isomerization from 11-cis-retinal to all-trans retinal? What essential characteristics of Opsin are necessary for chromophore binding? Schiff Base -Functional group contain a Carbon – Nitrogen double bond. -Nitrogen atom connected aryl or alkyl group but not Hydrogen. Cis–Trans Conformation

Isomerization animation of 11-cis retinal to all trans retinal

Rhodopsin Bleaching It most strongly absorbs green-blue light and therefore appears reddish purple which is why it’s called “visual purple”. Conformational changes triggered by light causes the opsin's absorption spectrum to shift into the UV region, so that the pigment will lose its color and is said to be bleached. Change in shape, size and rigidity of the Chromophore 11-cis-retinal

Photoisomerization: Two Possible Mechanisms 1. Bicycle-Pedal Mechanism: Rotation of two C-H bonds. 2. Hula-twist Mechanism: Proposes rotation of one C-H bond.

Photoisomerization Mechanism “There were, however, theoretical results that suggested that HT is a low-energy pathway (8) and that the minimum- energy pathway of relaxation of an excited conjugated polyene passes through a geometry (conical intersection) identical to that of the HT process” -Robert S. H. Liu, 2002 “Neither the BP mechanism, which would lead to a system with a shifted cis-bond, nor Liu’s Hula-Twist (HT) isomerization model are able to account for the strongly twisted but definitely all-trans-configured geometry observed in the primary Rhodopsin photointermediate.” -Igor Schapiro et al, 2008

Mechanism of Phototransduction Light hits the rod cell and isomerizes retinal. Rhodopsin is converted into metarhodopsin II. Metarhodopsin II activates the G-protein Transducin. The activated α-subunit of Transducin binds GTP (energy molecule) and activates Phosphodiesterase (PDE) PDE catalyzes the hydrolysis of cyclic GMP (cGMP) to GMP cGMP is required to open Na + channels in the plasma membrane. Neuroscience, Purves et al.,2001 cGMP hydrolyzed by PDE reducing its concentration

Phototransduction Is a process by which light is converted into electrical signals in the rod cells of the retina of the eye. Hyperpolarization: is a change in the cell’s membrane potential to make it more negative. It is opposite to depolarization. If a cell has Na + or Ca 2+ currents, then inhibition of those currents will result in a hyperpolarization. But what makes Sodium/Calcium ions open or close? Neuroscience, Purves et al., 2001

Amplification in the phototransduction cascade 1. A single photoactivated rhodopsin catalyses the activation of ~500 transducin molecules. 2. Each transducin can stimulate one phosphodiesterase molecule (enzyme) 3. Each phosphodiesterase molecule breaks down10 3 molecules of cGMP per second Therefore: 4.A single activated rhodopsin causes the hydrolosis of 5x10 5 molecules of cGMP per second. 5. Closing 200 ion channels. 6. That is 2% of the number of channels in the Rod cell. 7. This closure causes a net change in membrane potential of 1mV.

Schiff Base Links 11-cis-retinal to Opsin

Dark Adaptation and Rhodopsin Regeneration Dark adaptation is the amount of time it takes Rhodopsin increase sensitivity to light. The process usually takes about 30 minutes to reach its maximum. Above certain luminance level, the Cone mechanism is involved in mediating vision. Below this level Rod mechanism comes to play mediating night vision.

The Visual Cycle

Congenital Stationary Night Blindness (CSNB) Three times more common in boys than girls. Very difficult to diagnose in children who may communicate the symptoms as simple fear of the dark. Characterized by a prolonged activation of Rhodopsin in the Rod cells and thus continuous activation of the visual cascade. It is hypothesized that this prolonged activation of Rhodopsin leads to Rod cell degeneration (death). No known cure in humans, although gene therapy done on puppies with the disease has restored night vision.

Rhodopsin 3D Structure Primary structure lists the sequence of amino acids in a polypeptide chain. Secondary structure is when this chain fold into a regularly repeated structure. Tertiary structure is the spatial arrangement of the amino acid residues that are far apart in the sequence of the pattern, so it is the interaction of the R groups of the amino acids that determines its 3D structure. The 3D structure of the protein determines its function. Any change in the shape of the structure will affect its function.

Congenital Stationary Night Blindness When one of the following three mutations occurs, human night vision is compromised. A conformational change in Opsin makes it impossible for 11-cis retinal to link, disallowing the response to the absence of light The amino acid mutation of Glycine (G) 90 to Aspartate (D).

The amino acid mutation of Threonine (T) 94 to Isoleucine (I). The amino acid mutation of Alanine (A) 292 Glutamate (E).

Future Although there is not yet a cure for CSNB in humans, three methods hold hope for future patients. Gene Therapy: Recently implemented on dogs with the disease, this method replaces affected dogs’ genes with the genes from healthy dogs, successfully correcting the disorder. Researchers hope to use this procedure’s success to bring relief to humans suffering from the disease. Bionic Eye: Taking advantage of the healthy Optic Nerve in most CSNB patients, this procedure implants a Silicone chip that contains 5000 light sensitive cells in the retina of the patients to replace the malfunctioning Rod cells. It has been successful with other degenerative diseases of the Retina but has yet to be implemented on CSNB patients. As of November, Dr. Mangel and his team of the Ohio State Medical Center discovered that gap junctions linking Rod cells to Cone cells automatically open and close according to a molecular 24-hour clock in the Retina. Dr. Mangel hopes to use this research to gain insight into CSNB and ways to treat/cure it.