5. Data misfit 3. Full Bayesian Analysis of the Final Slip Distribution 3.1 Used data > InSAR: RadarSAT-2, ascending and descending orbit > GPS networks:

Slides:



Advertisements
Similar presentations
EARTHQUAKE FOCAL MECHANISMS (FAULT PLANE SOLUTIONS)
Advertisements

An estimate of post-seismic gravity change caused by the 1960 Chile earthquake and comparison with GRACE gravity fields Y. Tanaka 1, 2, V. Klemann 2, K.
Magnitude 7.1 NEAR THE EAST COAST OF HONSHU, JAPAN Thursday, April 7, 2011 at 14:32:41 UTC Japan was rattled by a strong aftershock and tsunami warning.
A 8.0 magnitude earthquake occurred offshore in the Solomon Islands. The earthquake occurred at a depth of 28.7 km (17.8 miles) and a tsunami warning was.
Page created by W. G. HuangCredit Digital Globe. Taiwan at 21:53:10.4 UTC N ; W Mw=7.1; Depth=10 km Earthquake Parameters Page.
Toward the next generation of earthquake source models by accounting for model prediction error Acknowledgements: Piyush Agram, Mark Simons, Sarah Minson,
Magnitude 8.9 (9.0) earthquake near Sendai, east coast of Honshu, Japan Friday, March 11, 2011 at 05:46:23 UTC Japan was struck by a magnitude 8.9 (9.0)
Report on “Evidence for tidal triggering of earthquakes as revealed from statistical analysis of global data” by S. Tanaka and M. Ohtake and H. Sato Carl.
A magnitude 7.3 earthquake occurred to the east of Kathmandu, in an area close to Mount Everest. This large earthquake is the largest aftershock so far.
A little more on earthquakes and faulting
Earthquakes Chapter 16. What is an earthquake? An earthquake is the vibration of Earth produced by the rapid release of energy Energy radiates in all.
Integrated Analyses for Monitoring and Rapid Source Modeling of Earthquakes and Tsunamis Brendan Crowell Subduction Zone Observatory Seminar May 13, 2015.
Single station location Multiple station location
UNIVERSITY OF ATHENS Faculty of Geology and Geoenvironment Department of Geophysics and Geothermics A. Agalos (1), P. Papadimitriou (1), K. Makropoulos.
Near-Field Modeling of the 1964 Alaska Tsunami: A Source Function Study Elena Suleimani, Natalia Ruppert, Dmitry Nicolsky, and Roger Hansen Alaska Earthquake.
Earthquakes Susan Bilek Associate Professor of Geophysics New Mexico Tech How to figure out the who, what, where, why… (or the location, size, type)
Sarah Minson Caltech February 22, 2011LLNL. Mark Simons (Caltech) James Beck (Caltech)
RAPID SOURCE PARAMETER DETERMINATION AND EARTHQUAKE SOURCE PROCESS IN INDONESIA REGION Iman Suardi Seismology Course Indonesia Final Presentation of Master.
1 Fault Dynamics of the April 6, 2009 L'Aquila, Italy Earthquake Sequence Robert B. Herrmann Saint Louis University Luca Malagnini INGV, Roma.
Earthquakes (Chapter 13). Lecture Outline What is an earthquake? Seismic waves Epicenter location Earthquake magnitude Tectonic setting Hazards.
Yan Y. Kagan Dept. Earth and Space Sciences, UCLA, Los Angeles, CA ,
The 03/11/2011 Mw9.0 Tohoku, Japan Earthquake Educational Slides Created & Compiled by Gavin Hayes & David Wald U.S. Geological Survey, National Earthquake.
Interseismic deformation with aseismic stress-dependent fault slip Eric A Hetland, Mark Simons, Ravi Kanda, Sue Owen TO brown-bag – 03 April 2007 a very.
INTERNAL TECTONIC STRUCTURE OF THE CENTRAL AMERICA WADATI-BENIOFF ZONE BASED ON ANALYSIS OF AFTERSHOCK SEQUENCES Aleš Špičák, Václav Hanuš, Jiří Vaněk.
IDENTIFICATION OF THE FAULT PLANE AND A SIMPLE 3D VISUALIZATION TOOL Petra Adamová, Jiří Zahradník Charles University in Prague
NE Caribbean and Hispaniola = major plate boundary, 2 cm/yr relative motion Strike-slip + convergence partitioned between 3 major fault systems Apparent.
DYNAMIC DISPLACEMENTS OF THE SEA BOTTOM DUE TO SUBDUCTION ZONE EARTHQUAKES A.I. IVASHCHENKO Institute of Oceanology, RAS, Moscow L.I. LOBKOVSKY Institute.
Blue – comp red - ext. blue – comp red - ext blue – comp red - ext.
Disputable non-DC components of several strong earthquakes Petra Adamová Jan Šílený.
LECTURE 6: SEISMIC MOMENT TENSORS
Large Earthquake Rapid Finite Rupture Model Products Thorne Lay (UCSC) USGS/IRIS/NSF International Workshop on the Utilization of Seismographic Networks.
Jayne Bormann and Bill Hammond sent two velocity fields on a uniform grid constructed from their test exercise using CMM4. Hammond ’ s code.
The January 2010 Efpalio earthquake sequence in Western Corinth Gulf: epicenter relocations, focal mechanisms, slip models The January 2010 Efpalio earthquake.
Sarah Minson Mark Simons James Beck. TeleseismicStrong motionJoint km Delouis et al. (2009) Loveless et al. (2010) Seismic + Static.
TOHOKU EARTHQUAKE: A SURPRISE? Yan Y. Kagan and David D. Jackson Department of Earth and Space Sciences, University of California Los Angeles Abstract.
GLOBAL EARTHQUAKE FORECASTS Yan Y. Kagan and David D. Jackson Department of Earth and Space Sciences, University of California Los Angeles Abstract We.
Relative quiescence reported before the occurrence of the largest aftershock (M5.8) with likely scenarios of precursory slips considered for the stress-shadow.
1 Cythera M6.7 earthquake (January 8, 2006) in southern Aegean: uneasy retrieval of the upward rupture propagation J. Zahradnik, J. Jansky, V. Plicka,
Moment Tensor Inversion in Strongly Heterogeneous Media at Pyhasalmi Ore Mine, Finland Václav Vavryčuk (Academy of Sciences of the CR) Daniela Kühn (NORSAR)
A magnitude 7.6 earthquake struck near the Solomon Islands on Sunday morning local time; there were no immediate reports of damage. The earthquake was.
Featuring contributions from… Mark Simons James L. Beck Junle Jiang Francisco H. Ortega Asaf Inbal Susan E. Owen Anthony Sladen.
California Earthquake Rupture Model Satisfying Accepted Scaling Laws (SCEC 2010, 1-129) David Jackson, Yan Kagan and Qi Wang Department of Earth and Space.
California Institute of Technology
SHORT- AND LONG-TERM EARTHQUAKE FORECASTS FOR CALIFORNIA AND NEVADA Kagan, Y. Y. and D. D. Jackson Department of Earth and Space Sciences, University of.
EARTHQUAKE AND TSUNAMI. BASIC CONCEPTS: THERMAL EVOLUTION OF OCEANIC LITHOSPHERE Warm mantle material upwells at spreading centers and then cools Because.
Understanding Earth Sixth Edition Chapter 13: EARTHQUAKES © 2011 by W. H. Freeman and Company Grotzinger Jordan.
Fault Plane Solution Focal Mechanism.
Brittle failure occurs within “seismogenic zone” defined by fault properties Typically 15 km for vertical strike slip faults ~30-50 km for subduction zone.
A new prior distribution of a Bayesian forecast model for small repeating earthquakes in the subduction zone along the Japan Trench Masami Okada (MRI,
Seismic phases and earthquake location
MOMENT TENSOR INVERSION OF POSSIBLY MULTIPLE EVENTS AT REGIONAL DISTANCES Petra Adamová 1, Jiří Zahradník 1, George Stavrakakis 2 1 Charles University.
Seismotectonics Mathilde B. Sørensen and J. Havskov.
Research and Hazard Challenges Raised by
Images courtesy of Google Earth (top), and USGS (bottom).
Kinematic Modeling of the Denali Earthquake
California Institute of Technology
Understanding Earth Chapter 13: EARTHQUAKES Grotzinger • Jordan
RECENT SEISMIC MONITORING RESULTS FROM THE CENTRAL
Earthquakes.
Principal Stress rotates to EW direction
High-Performance Computing (HPC) IS Transforming Seismology
Earthquakes Vibration of Earth produced by the rapid release of energy.
Slip pulse and resonance of Kathmandu basin during the 2015 Mw 7
by J. Galetzka, D. Melgar, J. F. Genrich, J. Geng, S. Owen, E. O
by Asaf Inbal, Jean Paul Ampuero, and Robert W. Clayton
by Satoshi Ide, Annemarie Baltay, and Gregory C. Beroza
by Wenyuan Fan, and Peter M. Shearer
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
by Naoki Uchida, Takeshi Iinuma, Robert M
by Hiro Nimiya, Tatsunori Ikeda, and Takeshi Tsuji
Presentation transcript:

5. Data misfit 3. Full Bayesian Analysis of the Final Slip Distribution 3.1 Used data > InSAR: RadarSAT-2, ascending and descending orbit > GPS networks: TO, PBO. > Vertical offsets from Tide gauges > Tsunami: DART stations 3.1 The forward problem > Solution: 3.2 Calculation of Cp based on the physics of the problem > A perturbation approach 2. The 2014 Pisagua earthquake sequence 2.1 Tectonic setting The 2014 Pisagua earthquake occurred in the northern portion of the north Chilean seismic gap which last ruptured in 1877 megathrust earthquake (Mw=8.8). Before 1877, it is unclear whether the region failed in huge single ruptures or in sequences of smaller ruptures The 2014 mainshock was preceded by two weeks of intense foreshock activity and followed by a large Mw=7.7 aftershock. 2.2 W-phase moment tensor inversion We compute a point-source moment tensor inversion of 85 manually selected low frequency (1–5 mHz) W-phase waveforms within an epicentral distance of 85°.This yields an almost purely double-couple solution consistent with Global CMT and the local slab geometry (Green mechanisms in Fig. 1). The Mw=8.1 Pisagua Earthquake of 1 April 2014 Z. Duputel, J. Jiang, R. Jolivet, M. Simons, L. Rivera, B. Riel, J.-P. Ampuero, S. Minson, H. Zhang, N. Cotte, E. Fielding, J. Klotz, A. W. Moore, E. O. Norabuena, S. E. Owen, S. Samsonov and A. Socquet 1. Abstract We investigate the rupture process of the 2014 Mw=8.1 Pisagua earthquake using ALTAR: an innovative Bayesian algorithm that is now implemented to run on GPU and allows sampling of posterior PDFs for high-dimensional problems. Our observations include InSAR, GPS and Tsunami data. We include a full data covariance matrix to account for measurement and prediction uncertainties. This covariance model provides a physical rationale for the relative weighting between available datasets and provides more realistic estimates of uncertainty on the inferred parameters. Our results indicate a relatively compact slip zone located down dip of the hypocenter. The absence of shallow rupture is mainly controlled by tsunami observations. In the same way, the 1995 Antofagasta and the 2007 Tocopilla earthquakes did not involve any slip near the trench. Using land-based geodetic data, it is fundamentally difficult to know if shallow portions of the north Chilean subduction zone are seismogenic or not. Therefore the occurrence of a major event rupturing the southern portion of the seismic gap and driving slip at shallow depth is plausible. However, the possibility of multiple smaller events that would progressively release the accumulated strain cannot be ruled out. Exact theoryStochastic (non-deterministic) theory p(d|m) = δ(d – g(,m))p(d|m) = N(d | g(,m), C p ) δg = K µ. δln C p = K µ. C µ. K µ T Observational errorPrediction uncertainty Partial derivatives w.r.t. the elastic parameters (sensitivity kernel) Covariance matrix describing uncertainty in the Earth model parameters Figure 2. Preliminary posterior mean slip model for the Mw=8.1 Pisagua earthquake. The color of each subfault patch indicates the slip amplitude. Red star is the hypocenter and Blue star is the W-phase centroid location. Figure 3. Model performance for InSAR data. Observations, synthetics and residuals are shown (top) for descending data, (bottom) for ascending data 6. Conclusion > The slip inversion is conducted in a Bayesian framework accounting for uncertainty in the elastic structure used to compute our predictions. > Our slip inversion results indicate a somewhat compact slip zone located south of the hypocenter. > This model can explain InSAR, GPS, tide gauges offsets and DART data reasonably well. > The Mw=8.1 Pisagua earthquake ruptured relatively small portion of the north Chilean seismic gap. > A Shallower slip zone leads to precursory tsunami arrivals that cannot be explained by DART data. > The remaining unbroken region is limited to the south by the 1995 Antofagasta (Mw=8.1) and the 2007 Tocopilla (Mw=7.7) events. > These events did not involve any shallow rupture, which brings interesting questions regarding the possibility of large slip close to the trench. Figure 4. Model performance for GPS, tide gauges and DART data. (left) GPS and tide gauges. (right) DART data. Arrows are GPS displacements and circles are tide gauges offsets. For GPS and DART data, observations are shown in black and synthetics are shown in red. For tide gauges, outer circles are observations and inner circles are predictions. Figure 1. The 2014 Pisagua earthquake sequence. Green focal mechanisms are W-phase solutions for the mainshock and the largest aftershock. Foreshocks from until are presented in Blue. Aftershocks until are shown in red. GCMT solutions are presented for events with Mw>6. Red contours are ruptures of the 1995, Mw 8.1, Antofagasta, the 2001, Mw 8.4, Arequipa, and the 2007, Mw 7.7 Tocopilla earthquakes. 4. Bayesian estimation of slip distribution We assume a curved fault derived from the distribution of seismicity and focal mechanisms. The slip is parameterized with piece-wise linear “tent” functions using a triangular mesh. This type of parameterization allows continuity of slip on the fault plane. The slip is inverted using a large number of transitional Markov Chains exploring the model space in parallel. This massive exploration of the parameter space is done using ALTAR, which exploit the capability of multiple GPUs on large computing clusters.