USING EQUATIONS  Nearly everything we use is manufactured from chemicals. › Soaps, shampoos, conditioners, cd’s, cosmetics, medications, and clothes.

Slides:



Advertisements
Similar presentations
STOICHIOMETRY USING THE REACTION EQUATION LIKE A RECIPE.
Advertisements

Mole Review 1.) Calculate the number of moles in 60.4L of O2. 2.) How many moles are there in 63.2g of Cl2? 1 mol O2 60.4L O2 = 2.7 mol O2 22.4L O2 1mol.
Chem 1A Chapter 3 Lecture Outlines
Drill – 2/28/11 Sodium chloride decomposes into sodium and chlorine. How much (in grams) sodium chloride is required to produce 50.0g of chlorine gas?
Reaction Stoichiometry Chapter 9. Reaction Stoichiometry Reaction stoichiometry – calculations of amounts of reactants and products of a chemical reaction.
Stoichiometry Chapter 12.
HONORS CHEMISTRY Feb 27, Brain Teaser Cu + 2 AgNO 3  2 Ag + Cu(NO 3 ) 2 – How many moles of silver are produced when 25 grams of silver nitrate.
Stoichiometry Chapter 12.
Equation Stoichiometry Chemical Equation – indicates the reactants and products in a rxn; it also tells you the relative amounts of reactants and products.
Chapter 9 Combining Reactions and Mole Calculations.
STOICHIOMETRY USING THE REACTION EQUATION LIKE A RECIPE.
Chapter 9 Combining Reactions and Mole Calculations.
WHAT DO THE COEFFICIENTS IN A REACTION TELL US??!?!
Section 3: Limiting Reactants
Limiting reagent, Excess reactant, Theoretical or Percent yield
MOLE RATIOS IN CHEMICAL EQUATIONS
9.3 Notes Limiting reagents.
Starter S moles NaC 2 H 3 O 2 are used in a reaction. How many grams is that?
Stoichiometry – “Fun With Ratios”
Stoichiometry.
Chapter 12 Stoichiometry
Review Answers with step-by-step examples
Stoichiometry Chapter 12.
MOLE RATIOS IN CHEMICAL EQUATIONS STOICHIOMETRY ‘ the study of the quantitative relationships that exist in chemical formulas and reactions ’ The study.
Chapter 12--Stoichiometry
STOICHIOMETRY Part II Mole-Mole Relationships
Chapter 12 Stoichiometry Mr. Mole. Molar Mass of Compounds Molar mass (MM) of a compound - determined by up the atomic masses of – Ex. Molar mass of CaCl.
 Nearly everything we use is manufactured from chemicals. › Soaps, shampoos, conditioners, cd’s, cosmetics, medications, and clothes.  For a manufacturer.
CHEMICAL QUANTITIES.  In chemistry you will do calculations using a measurement called a mole.  The mole, the SI unit that measures the amount of substances,
Chapter 9 Stoichiometry
Chapter 12 Stoichiometry 12.1 The Arithmetic of Equations
STOICHIOMETRY USING THE REACTION EQUATION LIKE A RECIPE.
STOICHIOMETRY USING THE REACTION EQUATION LIKE A RECIPE.
Stoichiometry Chapters 7 and 9.
Chapter 10 Stoichiometry Or One plus One isn’t always Two.
Stoichiometry – “Fun With Ratios” Main Idea: The coefficients from the balanced equation tell the ratios between reactants and products. This ratio applies.
MOLE-MOLE AND MASS-MASS CONVERSIONS Stoichiometry 1.
Stoichiometry. Information Given by the Chemical Equation  The coefficients in the balanced chemical equation show the molecules and mole ratio of the.
Stoichiometry. Stoichiometry is the branch of chemistry that deals with the quantities of substances that enter into, and are produced by, chemical reactions.
Stoichiometry.
StoIcHIomEtRY Chapter 9.
Stoichiometry! The heart of chemistry. The Mole The mole is the SI unit chemists use to represent an amount of substance. 1 mole of any substance = 6.02.
Calculate the mass of Cu produced? Mass of beaker and Cu – mass of beaker.
Define mole ratio (What is it? How is it determined?)
Unit 8 Review Stoichiometry Complete on Markerboard or in your notes.
Stoichiometry Interpreting Balanced Equations
Chapter 12 - Stoichiometry “SUPER DIMENSIONAL ANALYSIS”
What is stoichiometry? A problem solving method used to calculate the amount of product made or amount of reactant needed in a chemical reaction What is.
Stoichiometry Warmup I have 1 mole of CO 2 gas at STP. How many grams of CO 2 do I have? How many Liters of CO 2 do I have? How many molecules of CO 2.
Mass Relations in Chemistry: Stoichiometry. What is a Mole? In chemistry you will do calculations using a measurement called a mole. The mole, the SI.
Chapter 12: Stoichiometry
The recipe of chemistry Stoichiometry Ch 9. 2 Analogy Suppose you are preparing a cake. Each Cake (Ck) requires 1.0 cake mix (Cm), 0.5 cup of oil (Oi),
Ch. 9 Notes -- Stoichiometry Stoichiometry refers to the calculations of chemical quantities from __________________ chemical equations. Interpreting Everyday.
Stoichiometry. What is stoichiometry? Involves the mass relationships between reactants and products in a chemical reaction ▫Based on the law of conservation.
Stoichiometry GPS 13. Stoichiometry Example: 2H 2 + O 2 → 2H 2 O Equivalencies: 2 mol H 2 for every 1 mol O 2 2 mol H 2 for every 2 mol H 2 O 1 mol O.
Unit 10 Stoichiometry. Stoichiometry Looking at quantitative relationships of the reactants and products of a chemical equation MUST use a balanced equation.
Stoichiometry. Stoichiometry- mass and quantity relationships among reactants and products in a chemical reaction Chemists use balanced chemical equations.
Unit 8 Review Stoichiometry. 1. Describe how a chemist uses stoichiometry? To determine the amount of reactants needed or products formed based on the.
Stoichiometry Chapter 12. Chocolate Chip Cookies!! 1 cup butter ;1/2 cup white sugar 1 cup packed brown sugar 1 teaspoon vanilla extract 2 eggs ; 2 1/2.
LIMITING REAGENT. Recipe for Chocolate Cake: 2 c flour 1 c sugar 2 eggs 1 c oil ½ c cocoa X 3 6 c flour 3 c sugar 6 eggs 3 c oil 1½ c cocoa.
Stoichiometry. The study of quantitative relationships between amounts of reactants used and products formed by a chemical reaction is called Stoichiometry.
Stoichiometry Pre-AP Chemistry Unit 7, Chapter 8.
7/6/20161 Chap 9: Stoichiometry 7/6/20162 Section 9-1 Introduction to Stoichiometry Define stoichiometry. Describe the importance of the mole ratio in.
STOICHIOMETRY USING THE REACTION EQUATION LIKE A RECIPE.
Stoichiometry The calculation of quantities in chemical equations.
USING THE REACTION EQUATION LIKE A RECIPE
Stoichiometry II.
Ch. 9 Notes -- Stoichiometry
UNIT 9 STOICHIOMETRY.
Reaction Stoichiometry
Presentation transcript:

USING EQUATIONS  Nearly everything we use is manufactured from chemicals. › Soaps, shampoos, conditioners, cd’s, cosmetics, medications, and clothes.  For a manufacturer to make a profit the cost of making any of these items can’t be more than the money paid for them.  Chemical processes carried out in industry must be economical, this is where balanced equations help.

USING EQUATIONS  Equations are a chemist’s recipe. ◦ They tell chemists what amounts of reactants to mix and what amounts of products to expect.  When you know the quantity of one substance in a reaction, you can calculate the quantity of any other substance consumed or created in the rxn. ◦ Quantity meaning the amount of a substance in grams, liters, molecules, or moles.

Air BagChemistry YouTube - How an Airbag works

USING EQUATIONS  The calculation of quantities in chemical reactions is called stoichiometry.

USING EQUATIONS  Assume that the major components of a bike are the frame (F), the seat (S), the wheels (W), the handlebars (H), and the pedals (P).  The finished bike has a “formula” of FSW 2 HP 2.  The balanced equation for the production of 1 bike is. F +S+2W+H+2P  FSW 2 HP 2

USING EQUATIONS  Now in a 5 day workweek, A company is scheduled to make 640 bikes. How many wheels should be in the plant on Monday morning to make these bikes?  What do we know? ◦ Number of bikes = 640 bikes ◦ 1 FSW 2 HP 2 =2W (balanced eqn)  What is unknown? ◦ # of wheels = ? wheels F +S+2W+H+2P  FSW 2 HP 2

 The connection between wheels and bikes is 2 wheels per bike. We can use this information as a conversion factor to do the calculation. 640 FSW 2 HP 2 1 FSW 2 HP 2 2 W = 1280 wheels We can make the same kinds of connections from a chemical rxn eqn. N 2 (g) + 3H 2 (g)  2NH 3 (g) The key is the “coefficient ratio”.

◦ The coefficients of the balanced chemical equation indicate the numbers of moles of reactants and products in a chemical rxn.  1 mole of N 2 reacts with 3 moles of H 2 to produce 2 moles of NH 3. ◦ N 2 and H 2 will always react to form ammonia in this 1:3:2 ratio of moles.  So if you started with 10 moles of N 2 it would take 30 moles of H 2 and would produce 20 moles of NH 3 N 2 (g) + 3H 2 (g)  2NH 3 (g)

 Using the coefficients, from the balanced equation to make connections between reactants and products, is the most important information that a rxn equation provides. › Using this information, you can calculate the amounts of the reactants involved and the amount of product you might expect. › Any calculation done with the next process is a theoretical number, the real world isn’t always perfect.

MOLE – MOLE EXAMPLE The following rxn shows the synthesis of aluminum oxide. 3O 2 (g) + 4Al(s)  2Al 2 O 3 (s) If you only had 1.8 mols of Al how much product could you make? Given: 1.8 moles of Al Uknown: ____ moles of Al 2 O 3 3O 2 (g) + 4Al(s)  2Al 2 O 3 (s)

MOLE – MOLE EXAMPLE Solve for the unknown: 1.8 mol Al 4 mol Al 2 mol Al 2 O 3 = 0.90mol Al 2 O 3 3O 2 (g) + 4Al(s)  2Al 2 O 3 (s) Mole Ratio

MOLE – MOLE EXAMPLE 2 The following rxn shows the synthesis of aluminum oxide. 3O 2 (g) + 4Al(s)  2Al 2 O 3 (s) If you wanted to produce 24 mols of product how many mols of each reactant would you need? Given: 24 moles of Al 2 O 3 Uknown: ____ moles of Al ____ moles of O 2

MOLE – MOLE EXAMPLE 2 Solve for the unknowns: 24 mol Al 2 O 3 2 mol Al 2 O 3 4 mol Al = 48 mol Al 3O 2 (g) + 4Al(s)  2Al 2 O 3 (s) 24 mol Al 2 O 3 2 mol Al 2 O 3 3 mol O 2 = 36 mol O 2

Learning check Sodium metal reacts with chlorine gas to produce sodium chloride. Write a balanced chemical equation. If 3.75 mol Na react with enough chlorine gas, how much sodium chloride is produced? (answer: 3.75 mol NaCl) CW p p375 #11,12

MASS – MASS CALCULATIONS  No lab balance measures moles directly, generally mass is the unit of choice.  From the mass of 1 reactant or product, the mass of any other reactant or product in a given chemical equation can be calculated, provided you have a balanced reaction equation.  As in mole-mole calculations, the unknown can be either a reactant or a product.

MOLE A (mol) MASS A (g) MOLE B (mol) MASS B (g) Molar mass A g/mol (from P. table) Molar mass B g/mol (from P. table ) Mole ratio (from BALANCED equation)

Acetylene gas (C 2 H 2 ) is produced by adding water to calcium carbide (CaC 2 ). How many grams of C 2 H 2 are produced by adding water to 5.00 g CaC 2 ? CaC 2 + 2H 2 O  C 2 H 2 + Ca(OH) 2 MASS – MASS CALCULATIONS

What do we know? Given mass = 5.0 g CaC 2 Mole ratio: 1 mol CaC 2 = 1 mol C 2 H 2 (from balanced equation) Molar Mass (MM) of CaC 2 = 64.0 g/mol CaC 2 Molar Mass of C 2 H 2 = 26.0g/mol C 2 H 2 What are we asked for? grams of C 2 H 2 produced CaC 2 + 2H 2 O  C 2 H 2 + Ca(OH) 2 mass A  moles A  moles B  mass B

Learning check How many grams of O 2 are produced when a sample of 29.2 g of H 2 O is decomposed by electrolysis according to this balanced equation: 2H 2 O  2H 2 + O 2 CW p 393 #67-70

Limiting Reactant and Percent Yield Limiting reactant (reagent): reactant that determines the amount of product that can be formed in the reaction. Excess reactant (reagent): reactant that is not completely used up in a reaction.

Ex. 1 Copper reacts with sulfur to form copper (I) sulfide according to the following balanced equation. 2Cu + S  Cu 2 S What is the limiting reactant when 80.0 g Cu react with 25.0g S? Calculate using stoichiometry how much product ( Cu 2 S) each amount of reactant produces respectively.

Ex.2 The reaction between solid white phosphorus (P 4 ) and oxygen produces solid tetraphosphorus decoxide (P 4 O 10 ). Determine the mass of P 4 O 10 produced if 25.0g P 4 and 50.0g of oxygen are combined. How much excess reactant remains after the reaction stops?

Theoretical yield: The maximum quantity of product that a reaction could theoretically make (calculated based upon limiting reactant through stoichiometry). Actual yield : The amount of product that was obtained experimentally. This is the amount you really got. Percent Yield = Actual Yield x 100 Theoretical Yield Percent Yield

Ex. 1 ) g of silver nitrate, AgNO 3, yields 0.455g of silver chromate, Ag 2 CrO 4, according to the following BALANCED equation. Calculate the percent yield of the reaction. 2AgNO 3 (aq)+ K 2 CrO 4 (aq)  Ag 2 CrO 4 (s) + 2KNO 3 (aq)