Risk Mitigation 1 W ESTERN E LECTRICITY C OORDINATING C OUNCIL.

Slides:



Advertisements
Similar presentations
Westar Energy Smart Grid
Advertisements

Demand Response: The Challenges of Integration in a Total Resource Plan Demand Response: The Challenges of Integration in a Total Resource Plan Howard.
David Purkey, SEI Rob Lempert, RAND
Electric System Reliability in a Post SONGS World.
Reliability Challenges White Paper Victoria L. Ravenscroft Senior Policy Analyst W ESTERN E LECTRICITY C OORDINATING C OUNCIL.
DRAFT SUSTAINABLE COMMUNITIES CLIMATE ADAPTATION GUIDEBOOK Kate Marshall, SRA International, Inc. (703) ,
1.  Purpose  To present Staff’s Preliminary Findings on the 2012 Integrated Resource Plans of:  APS – Arizona Public Service Company  TEP – Tucson.
Ensuring Reliable Electricity Supplies Using Distributed Generation Gregory Tress Carnegie Mellon University.
EStorage First Annual Workshop Arnhem, NL 30, Oct Olivier Teller.
SUSTAINABLE ENERGY REGULATION AND POLICY-MAKING FOR AFRICA Module 14 Energy Efficiency Module 14: DEMAND-SIDE MANAGEMENT.
SMART GRID: What is it? Opportunities, and Challenges
ENERGY INDUSTRY FUNDAMENTALS: MODULE 4, UNIT B— Transmission, Governance, Stability & Emerging Technologies.
Siemens sans siemens sans bold siemens sans italic siemens sans italic bold siemens sans black siemens black italic Siemens Building Technologies.
ACTION PROPOSAL FOR FLYWHEEL ENERGY TECHNOLOGY Enhance future grid reliability, interoperability, & extreme event protection In 20 years, the flywheel.
SUSTAINABLE ENERGY REGULATION AND POLICY-MAKING FOR AFRICA Module 13 Energy Efficiency Module 13: SUPPLY-SIDE MANAGEMENT.
E.ON on the Romanian Energy Market ZF Power Summit Bucharest, February 27, 2013 Frank Hajdinjak CEO E.ON România.
National Renewable Energy Laboratory Innovation for Our Energy Future * NREL July 5, 2011 Tradeoffs and Synergies between CSP and PV at High Grid Penetration.
Energy and Industry Trends Dave Molin VP & General Manager Honeywell Building Control Systems.
Smart Grid APPA Annual Meeting Kiah Harris Burns & McDonnell June 15, 2009.
America’s Water Upmanu Lall water.columbia.edu.
Copyright © 2011 Power Analytics Corp. The Evolution of the Microgrid A microgrid is an integrated energy system with: –Co-located power generation sources.
IWRM as a Tool for Adaptation to Climate Change
Smart Grid- An Introduction
1 icfi.com | 1 Local Solutions: Northeast Climate Change Preparedness Conference Rawlings Miller, PhD May 19, 2014 Tools / Resources for Considering Climate.
Energy Assurance Planning: Integrating Resiliency and Sustainability Larisa Dobriansky, Global Energy Network COG EAC 1/17/13
Black Sea Regional Transmission Planning Project By Predrag Mikša EKC - Electricity Coordinating Center Istanbul, March 2011.
Developing the Next Generation of Energy Scenarios for California Guido Franco Team Lead for Climate Change and Environmental Research Sonya Ziaja Research.
1 Critical Mission Support Through Energy Security Susan Van Scoyoc Concurrent Technologies Corporation 16 August 2012 Energy Huntsville Meeting Huntsville,
New Hampshire’s Public Water Systems Climate Change Challenges 2014 Annual Meeting Robert Scott, Commissioner, New Hampshire Public Utilities Commission.
1 TRANSMISSION SYSTEM OVERVIEW NETWORK OPERATING COMMITTEE April 17, 2007 New Mexico Transmission System Overview.
OVERVIEW OF ISSUES DR AND AMI HELP SOLVE Dr. Eric Woychik Executive Consultant, Strategy Integration, LLC APSC Workshop on DR and AMI.
6, rue du Général Clergerie Paris – France Tel: +33-(0) Fax: ~ Michel COLOMBIER IDDRI Paris Impacts and Adaptation.
So Now What Do We Do? Planning for Climate Change Climate science in the public interest Lara Whitely Binder Climate Impacts Group Center for Science in.
Phoenix Convention Center Phoenix, Arizona Taking a Holistic Approach to Energy Strategy Integrated Energy TrackIntegration of the Energy Industry Chris.
Power Association of Northern California Maintaining Grid Reliability In An Uncertain Era May 16, 2011 PG&E Conference Center Jim Mcintosh Director, Executive.
Utility Engineers, PC.  Generation  Transmission  Distribution.
October 29, Organizational role of Short-Term Planning and Hydro Duty Scheduling Relationship to other groups in BPA Planning and analysis job.
Steady State Analysis Of A Microgrid Connected To A Power System
ERCOT Generation Drought Best Practices Workshop Water Conservation Practices for Texas Generators February 27, 2012.
SMART GRID A smart grid for intelligent energy use. By: Suhani Gupta.
Demand Response
Smart Grid Schneider Electric Javier Orellana
PJM©2014www.pjm.com A System Operator’s Resilience Wish List Tom Bowe Executive Director Reliability and Compliance PJM Interconnection
Dr. Joerg Hartmann WWF Dams Initiative Leader Energy in a Water Constrained World.
California Energy Action Plan December 7, 2004 Energy Report: 2004 and 2005 Overview December 7, 2004.
Smart Grid Vision: Vision for a Holistic Power Supply and Delivery Chain Stephen Lee Senior Technical Executive Power Delivery & Utilization November 2008.
Institutional Support Vladimir Koritarov Argonne National Laboratory April 2016.
Engineering Perspectives – Towards Structural Change Jackie Kepke, P.E. Workshop on Climate, Society, and Technology June 7, 2011.
Climate Change Threat Sea-Level Rise 1. Potential Impacts from Sea-Level Rise How might our community be impacted by sea-level rise? 2.
©2003 PJM 1 Presentation to: Maryland Public Service Commission May 16, 2003.
Climate Change Threat Drought 1. Potential Impacts from Drought How might our community be impacted by drought? 2.
Climate Change Threat Reduced Snowpack 1. Potential Impacts Related to Reduced Snowpack How might our community be impacted by reduced snowpack? 2.
SEMINAR PRESENATATION ON WIDEAREA BLACKOUT (AN ELECTRICAL DISASTER) BY:Madhusmita Mohanty Electrical Engineering 7TH Semester Regd No
Climate Resilient Transportation Infrastructure Standards Workshop
Experiences and Best Practices to Address Climate Change in New Jersey Moderator Michael Catania, Duke Farms Panelists Russell Furnari, PSEG Services Corporation.
Kenya’s INDC: Actions in the Energy Sector
RENEWABLES AND RELIABILITY
Preparing for Climate Change:
Economic Operation of Power Systems
Microgrids and Energy Storage for Smart City Planning

EU-IPA12/CS02 Development of the Renewable Energy Sector
Factors to Consider when Designing a Reliable Power Grid
Factors to Consider when Designing a Reliable Power Grid
H2 Sustainable Transportation Energy Pathways (STEPS)
Byron Woertz, Manager—System Adequacy Planning
Climate Resilience and Transportation Planning in KC
Byron Woertz, Manager—System Adequacy Planning
FEED-X: SLU FOOD (IG5) As one of the world’s most efficient protein generators, there is increasing focus on aquaculture to provide the protein to feed.
Jim Mcintosh Director, Executive Operations Advisor California ISO
Presentation transcript:

Risk Mitigation 1 W ESTERN E LECTRICITY C OORDINATING C OUNCIL

A few additional words about uncertainty The uncertainties mentioned at the outset are not likely to be resolved in the near future. The “Predict -> Act” model that is often used in risk management is not well- matched to the uncertainties associated with climate change. A Robust Decision Making approach is emerging as a preferred alternative in which: – Response options are considered in light of a range of multiple plausible future conditions. – Where possible, flexibility is baked into decisions. – Decisions are intentionally revisited periodically and adjusted, as appropriate, in light of new information about the energy and climate systems. Requires a set of indicators to guide the adaptive management. E.g., – Climate change (to gauge the trajectory): Observed indicators; Updated future estimates (regional differentiation important) – Non-climate drivers: Observed indicators of, e.g., water withdrawals, population, land cover, etc. – Electricity system impacts: Monitoring of each major interdependent system component – Policies and Regulations: Ongoing analysis of how changing policy and regulatory environment affects climate change impacts on reliability 2 W ESTERN E LECTRICITY C OORDINATING C OUNCIL

Cross-Cutting Preparation Considerations 3 W ESTERN E LECTRICITY C OORDINATING C OUNCIL Disaster-Related Adaptation Prepare for more weather-related disturbances and emergency responses; update hazard and emergency risk management plans to include climate change Post-Event Analyses of Reliability (PEAR) – i.e., learn from disasters; overlay climate change for a window into the future Pre-plan for post-event climate-resilient reconstruction But, in general, phase major climate-resilient investments with normal replacement cycle

Cross-Cutting Preparation Considerations (cont.) 4 W ESTERN E LECTRICITY C OORDINATING C OUNCIL Employ energy smart engineering across or on specific elements within the energy supply chain, e.g.: Consider revisions to engineering standards used to set current system capacity levels that account for the changing conditions Smart metering that has outage notification capabilities, making it possible to pinpoint outage timing and locations more precisely, saving time and money. Automated feeder switches that open or close in response to a fault condition reducing the number of customers affected by an outage Equipment health sensors to reveal possibilities for premature failures Smart microgrids to help to achieve a good match between generation and load Raise the priority of energy demand management. Reduce energy demand by either increasing efficiency or reducing consumption (incentives, education and awareness raising); shift timing of demand to better match generation Promote investment in water efficient systems. Investments and shifts towards less water-intensive generation methods such as dry/hybrid cooling systems for thermoelectric power plants may prove to be viable and cost effective.

5 Explore energy market mechanisms: e.g., power exchange agreements; purchasing from the spot market; options purchasing; Utility commission rate‐setting practices for financing new and higher capacity levels may need to be changed. Pro-actively partner with water management entities in planning for climate change; secure an adequate water supply, suited to the water conditions of the future Improve land use planning and management. – Integrate climate projections into facility planning and site selection processes. – Promote improvements in upstream land use management, including afforestation to reduce floods, erosion, silting and mudslides. – Acquiring land for setbacks that allow space for projected increases in the floodplain. – Secure adequate right-of-ways for increased fire buffering. Cross-cutting Preparation Considerations (cont.)

6 Consider benefits of increases in system redundancy Promote flexibility and adaptability (RDM). Given climate change uncertainty, a flexible and adaptable approach can improve capacity to adjust to new conditions. – E.g., make shorter term resource agreements (e.g., water rights) that don’t constrain options in a different climate; allow design curves to be adjusted on the basis of new information about climate Deal with all hazards in an integrated fashion; do not create stovepiped responses to individual climate change hazards for individual system components. – Protect the entire supply chain – Integrate consideration of climate- and non-climate hazards Cross-cutting Preparation Considerations (cont.)

Risk Mitigation – T&D 7 W ESTERN E LECTRICITY C OORDINATING C OUNCIL Transmission line capacity – build additional transmission capacity to cope with increased loads and to increase resilience to direct physical impacts – reduce line capacity requirements by producing a larger fraction of power at or near the destination – place transmission lines underground (also helps with fire and storm damage threats) Substation/Transformer capacity – proactively install new types of cooling and heat-tolerant materials/technology – install cooling systems for transformers – elevate substation control rooms to reduce potential flooding hazards (cont.)

Risk Mitigation – T&D (cont.) 8 W ESTERN E LECTRICITY C OORDINATING C OUNCIL Fire threats – increase fire corridors around transmission lines – use transmission line materials that can withstand high temperatures Erosion and flooding threats – create “green” buffers around exposed infrastructure – construct levees or berms to protect exposed infrastructure – elevate or relocate substations – consider extreme event threats in new siting – relocate towers/poles – reinforce towers/poles against flooding High wind threats – reinforce or replace towers/poles with stronger materials or additional supports to make them less susceptible to wind & flood damage Prediction and Monitoring – invest in improvements to short- and medium-term weather, climate, and hydrologic forecasting to improve lead times for event preparation and response – routinely monitor bellweather indicators related to climate, water, and T&D efficiency/costs Planning and design – revise design thresholds using climate change projections – incorporate climate change projections into planning processes

Risk Mitigation – Fossil Fuel & Nuclear 9 Increase margin of protection from river flooding and storm surge: Harden and elevate protective structures Invest in “green” infrastructure Build additional generation capacity to account for: Increased customer loads (summer cooling) Increased line losses Decreased generation efficiency Increased weather-related infrastructure damage Retrofit power plants with additional cooling equipment and processes Implement dry cooling technologies in water-limited areas (cont.)

Risk Mitigation – Fossil Fuel & Nuclear (cont.) 10 Prepare emergency contingency plans to ensure adequate cooling water to cope with drought conditions and high temperatures, accounting for competing water demands. Ensure adequate backup generation and cooling systems for nuclear power plants facing increased exposure to flooding and other extremes. Explore energy market mechanisms: e.g., power exchange agreements; purchasing from the spot market; options purchasing.

Risk Mitigation - Hydropower 11 W ESTERN E LECTRICITY C OORDINATING C OUNCIL Securing adequate water supply – Contracts and contingencies based on an understanding of the hydrologic future that is different than the past – Enhancements to water use efficiencies and conservation (as well as electricity DSM) – Watershed protection to reduce evaporation and silt loading Diversification – New peak generation and purchasing sources for summer months, with declining generation potential and growing summer demand Enhanced operational management – Couple improvements in short-term and seasonal hydrologic forecasting to analyses of long-term climate change to improve management and operational decisions. e.g., to maintain more winter carryover reservoir storage, and reduce discretionary reservoir water releases – Evaluate operational changes (e.g., reservoir rule curve changes) given climate change to optimize energy output, given other constraints and water priorities Infrastructure retrofits – Changes in intake elevation; spillway design – Incorporation of climate change projections into engineering design and planning design specifications that incorporate climate change could enable structures to better withstand more extreme conditions.

Risk Mitigation – Other Renewables Engineering Design – Wind: to design turbines and structures better able to handle changing wind speeds and gusts to capture greater wind energy with taller towers, or to design new systems better able to capture the energy of increased wind speeds. – Solar: designs that improve passive airflow beneath photovoltaic mounting structures, reducing panel temperature and increasing power output. Choose modules with more heat-resistant photovoltaic cells and module materials designed to withstand short peaks of very high temperature. Siting – Wind: Choose sites that take into account expected changes in wind speeds, storm surges, sea level rise, and river flooding during the lifetime of the turbines. – Solar: site solar photovoltaic systems where expected changes in cloud cover are relatively low, although this is difficult to accurately predict Improved weather prediction – For wind and solar technologies, it may be possible to improve the reliability of expected output with better weather predictions. 12

Risk Mitigation – Other Renewables (cont.) Grid Design – Wind and Solar: network expansion and/or protection to ensure reliability of more intermittent renewables – Wind and Solar: Storage of electrical energy to allow a greater percentage of renewable energy into the grid-- when renewable output is high and the demand low, and generating when renewable energy output is low and the demand high, grid stability can be improved and baseload generation units can operate more efficiently. Storage can also reduce transmission congestion and may reduce or delay the need for transmission upgrades – Consider distributed systems (rather than feeding power into a single part of the grid), which can improve grid stability (although mobile repair teams may be needed to repair damage from extreme events) 13 W ESTERN E LECTRICITY C OORDINATING C OUNCIL