Star Life Cycle.

Slides:



Advertisements
Similar presentations
Notes 30.2 Stellar Evolution
Advertisements

A journey to the stars.
Stars The life and death of stars in our universe.
George Observatory The Colorful Night Sky.
Life Cycle of a Star.
Life Cycle of a Star Star Life Cycle: Stars are like humans. They are born, live and then die.
A star is born… A star is made up of a large amount of gas, in a relatively small volume. A nebula, on the other hand, is a large amount of gas and dust,
Life Cycle of Stars Section 26.3.
The Universe… …is space and everything in it.
Star Life Cycle.
Life Cycles of Stars.
The Life Cycle of a Star.
Random Letter of Wisdom Dear Mr. Planisek’s HPSC classes: Before you begin today- 1.This is one of the best classes that you will ever take. Keep.
Classifying Stars Brightness. Some stars are so bright that you can see them even in a lighted city, while others are so dim that you can only see them.
The Evolution of Stars - stars evolve in stages over billions of years 1.Nebula -interstellar clouds of gas and dust undergo gravitational collapse and.
Mike Chris. Stars begin as a nebula, or clouds scattered dust made mostly of hydrogen As the nebula collapses the contents of it begin to to heat up.
NOT THOSE TYPES OF STARS! LIFE CYCLE OF STARS WHAT IS A STAR? Star = ball of plasma undergoing nuclear fusion. Stars give off large amounts of energy.
Life Cycles of Stars. Stars Stars are a large hot balls of plasma that shine The Sun is the Star in our solar system A group of stars that form a recognizable.
Galaxies The Life and Death of the Stars. A galaxy is a cluster of stars, gas, and dust that are held together by gravity. There are three main types.
Key Ideas How are stars formed?
STARS By Bodin Lay. Types of Stars Main Sequence Stars - The main sequence is the point in a star's evolution during which it maintains a stable nuclear.
Lives of Stars Notes. The Lives of Stars A star is not organic, therefore it IS NOT alive. Astronomers typically talk about the life cycle of a star as.
 A star is a ball of hydrogen, helium and enough mass that can bear nuclear fusion at its core  Stars are most often seen at night in a clear sky 
Birth and Life of a Star What is a star? A star is a really hot ball of gas, with hydrogen fusing into helium at its core. Stars spend the majority of.
Astronomy – Stellar Evolution What is a Star? Stars are hot bodies of glowing gas that start their life in Nebulae.(1) 2.
1 Stellar Lifecycles The process by which stars are formed and use up their fuel. What exactly happens to a star as it uses up its fuel is strongly dependent.
The Life Cycle of a Star The Horsehead Nebula – one of the most famous pictures in astronomy.
Notes using the foldable
Life Cycle of Stars Nebula hundreds of light years in size contract under gravity
A Note Taking Experience.
Life Cycle of Stars Birth Place of Stars:
Chapter 30 Section 2 Handout
Studying the Lives of Stars  Stars don’t last forever  Each star is born, goes through its life cycle, and eventually die.
Life Cycle of a Star Star Life Cycle: Stars are like humans. They are born, live and then die.
Life Cycle of a Star The changes that a star goes through is determined by how much mass the star has. Two Types of Life Cycles: Average Star- a star with.
Stellar Lifecycles The process by which stars are formed and use up their fuel. What exactly happens to a star as it uses up its fuel is strongly dependent.
The Life Cycle of Stars. Cycle for all stars Stage One- Born in vast, dense clouds of gas, mostly hydrogen along with small amounts of helium, and dust.
Unit 1 Lesson 3 The Life Cycle of Stars
Unit 1: Space The Study of the Universe.  Mass governs a star’s temperature, luminosity, and diameter.  Mass Effects:  The more massive the star, the.
The life cycle of stars from birth to death
STARS.
THE BIRTH AND DEATH OF A LOW/MEDIUM MASS STAR. Stars begin as NEBULAS, a large cloud of dust and gas.
Stars Which includes the Sun? Cosmology- the study of cosmos.
The Life Cycle of Stars.
THE LIFE CYCLE OF A STAR Objective: I will compare and contrast the life cycle of stars based on their mass.
Life Cycle of a Star! Chapter 28 Section 3.
A Star’s Life Cycle EQ: How do stars live and die?
Stellar Evolution. Structure Mass governs a star’s temperature, luminosity, and diameter Hydrostatic Equilibrium – the balance between gravity squeezing.
Unit 1 Lesson 3 The Life Cycle of Stars
Star Life Cycle.
Stage 1: Nebula – Latin for “cloud”
Handout 2-1a Stellar Evolution.
Life Cycle of a Star.
Notes using the foldable
Star Life Cycle.
Life Cycle of a Star Star Life Cycle: Stars are like humans. They are born, live and then die.
Stars.
Write to Think LESSON 158 What does the term ‘classify’ mean to you?
The Life Cycle of a Star.
Star Life Cycle.
Stars form from nebulas Regions of concentrated dust and gas
Astronomy Star Notes.
Star Life Cycle.
Star Life Cycle.
The Life Cycle of a Star.
The Life and Death of Stars
Lives of Stars.
Unit 2: Stellar Evolution and Classification …The stars are a lot more than belonging to constellations! Unit 2 Miss Cohn.
Stars and Galaxies.
Presentation transcript:

Star Life Cycle

Generally speaking, there are two main life cycles for stars. The factor which determines the life cycle of the star is its mass. 1 solar mass = size of our Sun Any star less than about three solar masses will spend almost all of its existence in what is called the “main sequence”. One solar mass is the mass of our Sun. About 90% of all stars are like this.   If a star is more than three solar masses when it is “born” or formed, it will spend much less time on the main sequence, have a much shorter life span, and “die” or end violently. Once a star is born, it is set in a specific life cycle, and the outcome will not vary. Main Sequence Stars

Stellar Nebula (a star nursery) Space may seem empty, but actually it is filled with thinly spread gas, mostly hydrogen, and dust. The dust is mostly microscopic grains of carbon and silicon. In some places, this material is collected into a big cloud of dust and gas, known as a nebula. Stars form from collapsing clouds of gas and dust. All stars begin in a nebula. The dust and gas that makes a nebula comes from past exploded stars. This material is called interstellar medium.   Stars begin to form in high density areas of the nebula. Huge amounts of gas and dust condense and contract under its own gravity. Stellar Nebula (a star nursery)

Some gas and dust is pulled by gravity to the core Some gas and dust is pulled by gravity to the core. As the region of condensing matter heats up, it begins to glow. This is called a protostar. Temperature rises, and nuclear fusion begins. This is the “birth” of the star. Nuclear fusion is the atomic reaction that fuels stars. Fusion in stars is mostly converting hydrogen into helium. Stars that are up to 1.5 times the mass of the Sun are called “main sequence” stars and will burn for a long time. If there is enough matter in the core and the temperature reaches 15 million °C, fusion begins. Think of stars as giant nuclear reactors. Nuclear fusion is the atomic reaction that fuels stars.   In fusion, atom nuclei combine together to make a larger nuclei which forms a different element. The change of elements by fusion releases large amounts of energy. This energy makes the stars hot and bright. Fusion in stars is mostly converting hydrogen into helium. Stars smaller than our Sun can convert only hydrogen into helium during fusion. Medium-sized stars, like our Sun, can convert helium into oxygen and carbon, when all the hydrogen is used up. If a protostar does not reach a temperature hot enough to begin fusion, it will stay cool and dim. It is called a brown dwarf. Brown dwarfs are objects which are too large to be called planets and too small to be stars. They were first discovered in 1995. It is now thought that there might be as many brown dwarfs as there are stars. Sun-like Stars

A red giant is a large star that is reddish or orange in color. It represents the phase in a star's life when its supply of hydrogen has been exhausted and helium is being fused into carbon. This causes the star to collapse, raising the temperature in the core. The outer surface of the star expands and cools, giving it a reddish color. Red giants are very large, reaching sizes of over 100 times the star's original size. A star may remain in the main sequence until all of the hydrogen has been fused to form helium. This can take 10 billion years.   The core begins to contract and heat up. This extra heat allows helium to fuse into carbon. The outer layers of the star expand and cool. Since it is cooler, it will shine less brightly. The expanded star is now called a red giant. Remember, that something that is “white hot” is much hotter than something that is “red hot”. A red giant can exist for about 100 million years. After this time, the red giant is mostly carbon. The Sun is predicted to become a red giant in approximately 5–7.5 billion years. When our Sun expands to a red giant, its radius will be about 200 times larger than it is now. This means that it will expand through the orbits of Mercury and Venus. Earth will not be able to support life when it is located that close to the Sun. Red Giant

Planetary nebulae form when a main sequence star grows into a red giant and throws off its outer layers and the core collapses. The term "planetary" comes from the 19th century, when astronomers saw what looked like a new planet in their primitive telescopes. This was a time before people knew that there were different types of galaxies. The name has stuck ever since. The next fusion process would be to fuse the carbon into iron. The problem in this star is that there is not enough pressure in the core to do this.   Because the outward pressure of energy is no longer maintained, the core collapses and sends a shockwave outwards. This causes the star's outer layers to be cast off and form a planetary nebula. These nebulae get their mostly circular shape because the material is thrown off the star in a roughly symmetrical pattern. Planetary Nebula

The collapsed core left when a red giant loses its outer layers is called a white dwarf. It is made of pure carbon that glows white hot with leftover heat from the spent fuel. It will drift in space while it slowly cools. It is the size of Earth, but very dense. A teaspoon of the material would weigh as much as an elephant. The remaining core, 80% of the original star, is now in its final life stages. The core is called a white dwarf. The core has much less mass because it has lost its outer layers.   Any planets that the star would have had revolving around it, would have done one of the following: moved to much farther orbits been completely ejected from the system been engulfed by the star in the expanded red giant phase The star eventually cools and dims. White Dwarf

A black dwarf is a white dwarf star that has cooled completely and does not glow. It will drift in space as a frozen lump of carbon. The star is considered “dead”. Black Dwarf When the star stops shining, as a result of using up all of its fuel, it is considered a dead star.

Massive Stars

Stellar Nebula (a star nursery) All stars form from collapsing clouds of gas and dust found in a nebula. Stellar Nebula (a star nursery) All stars begin the same way. They form in a stellar nebula from interstellar dust and gas,

Massive stars are stars that are between 1 Massive stars are stars that are between 1.5 to three times the mass of the Sun. A star with a much greater mass will form, live, and die more quickly than a main sequence star. Massive stars follow a similar life cycle as small and medium stars do, until they reach their main sequence stage. This occurs because the gravity squeezes the star's core and creates greater pressures, resulting in a faster fusion rate. The stars shine steadily until the hydrogen has fused to form helium. This takes billions of years in a small/medium star, but only millions of years in a massive star.   Massive stars use their fuel much faster than smaller stars do. Massive Stars

A red supergiant glows red because its outer layers have expanded, producing the same amount of energy over a larger space. The star becomes cooler. Red stars are cooler than blue or white stars. A supergiant has the pressure needed to fuse carbon into iron. This fusion process takes energy, rather than giving it off. As energy is lost, the star no longer has an outward pressure equal to gravity pushing in. Gravity wins, and the core collapses in a violent explosion. When massive stars deplete their hydrogen, the remaining helium atoms are converted into carbon and oxygen. In the next million years, a series of nuclear reactions occur, forming different elements in shells around the core. Carbon and oxygen change into neon, sodium, magnesium, sulfur, and silicon. Later, reactions transform these elements into calcium, iron, nickel, chromium, copper, and others. The core eventually becomes iron. Red Supergiant

A supernova is an explosion of a massive star at the end of its life; the star may briefly equal an entire galaxy in brightness. At this point, the mass of the star will determine which way it continues in the life cycle. The core collapses in less than a second, causing an explosion called a supernova, in which a shock wave blows off the outer layers of the star.   When these old, large stars with depleted cores explode in a supernova, they create heavy elements. Heavy elements are considered all of the natural elements heavier than iron. These elements are spewed into space by the explosion. Supernovas can be exceptionally bright. A supernova explosion on July 4, 1054 was so bright that it could be seen in broad daylight for 23 days. Supernova

Neutron Star or Black Hole? If the star is at least 1.5 but less than nine times larger than the Sun, the core left after the supernova will collapse into a neutron star. This is a star composed only of neutrons. Black Hole If the star is at least nine or more times larger than the Sun, the core will continue to collapse into a black hole, an extremely dense area with a strong gravitational pull that light can not escape. Neutron Star: At the time of supernova, the central region of the star collapses under gravity. It collapses so much that protons and electrons combine to form neutrons.   A neutron star is about 20 km in diameter and has the mass of about 1.4 times that of the Sun. A neutron star is so dense that one teaspoonful would weigh a billion tons. Because of its small size and high density, a neutron star possesses a surface gravity about 2 x 1011 times that of Earth and a magnetic field a million times stronger. Neutron stars can spin 100 times in a second. Pulsars are spinning neutron stars that have jets of particles moving almost at the speed of light, streaming out above their magnetic poles. These jets produce very powerful beams of light. They were discovered in 1967. Black Holes: If the surviving core is greater than three solar masses, it contracts to become a black hole. If a black hole passes through a cloud of interstellar matter, or is close to another “normal” star, the black hole can pull matter onto itself. As the matter is pulled towards the black hole, it gains kinetic energy, heats up, and is squeezed by forces. As it gets hotter, this matter gives off radiation that can be measured. This allows astronomers to find black holes. Neutron Star or Black Hole?

Our Sun Our Sun is a medium sized, main sequence star. It is the closest star to Earth. Our Sun