Liquids and Solids Chapter 13.

Slides:



Advertisements
Similar presentations
The Kinetic Theory of Matter
Advertisements

I. Kinetic Molecular Theory KMT
States of Matter Newport High School Academic Chemistry Modified from a PowerPoint found at
I. Kinetic Molecular Theory KMT. Assumptions of KMT All matter is composed of tiny particles These particles are in constant, random motion. Some particles.
I. Intermolecular Forces (Ch. 6, p )
LIQUIDS AND SOLIDS. LIQUIDS: Why are they the least common state of matter? 1. Liquids and K.M.T.  Are particles in constant motion? Spacing? Kinetic.
Chapter 10 States of Matter. Section 1: The Kinetic-Molecular Theory of Matter.
Chapter 10 States of Matter
Chapter 4 States of Matter.
Liquids and Solids.
Intermolecular Forces, Liquids and Solids CHAPTER 11 CHEM 160.
Chapter 14: Liquids and Solids
Modern Chemistry Chapter 10 States of Matter
Chapter 12 – Liquids and Solids. Which one represents a liquid? Why?
Chapter 12 Liquids and Solids.
Phases of Matter.
Intermolecular Forces and Liquids and Solids Chapter 11.
Properties of Liquids and Solids
Liquids and Solids Solids.
STATES OF MATTER Chemistry CP.
Intermolecular Forces. Kinetic Molecular Theory  Describes the behavior of subatomic particles Liquids, solids, and gases are composed of small particles.
States of Matter.
Condensed States of Matter
Energy and Phase Changes
Liquids & Solids I. Intermolecular Forces. A. Definition of IMF  Attractive forces between molecules.  Much weaker than chemical bonds within molecules.
Physiological Chemistry Chapter 5 States of Matter: Liquids and Solids.
Liquids and Solids The Condensed States of Matter Chapter 10.2 – 10.3.
The Kinetic-Molecular Theory of Gases
Chapter 10. The kinetic-molecular theory is based on the idea that particles of matter are always in motion. used to explain the properties of solids,
Chapter 12 Liquids and Solids Definitions!!!!  Fluid- a substance that can flow and therefore take the shape of its container.  Liquids and Gases.
Intermolecular Forces and Liquids and Solids Chapter 10.
Chapter 13 States of Matter Read pgs Kinetic Molecular Theory The kinetic molecular theory describes the behavior of gases in terms of particles.
The States of Matter States of Matter u There are 4 states of matter. u A solid is a form of matter that has its own definite shape and volume.
Chapter 10 States of Matter Kinetic Molecular Theory (KMT) “Particles of Matter are always in motion” States of Matter We will discuss the KMT in.
Chapter 13 States of Matter Liquids and Solids Changes of State.
Liquids & Solids. Objectives 12-1 describe the motion of particles of a liquid and the properties of a liquid using KMT define and discuss vaporization.
States of Matter Part 3. Liquids Kinetic-molecular theory can be applied to liquids Predicts that molecules of a liquid are in constant motion –Forces.
Chap 12 Liquids and Solids. Properties of Liquids and the Kinetic-Molecular Theory Liquid- is a form of matter that has a definite volume and takes the.
Chapter 13 – Liquids and Solids. Which one represents a liquid? Why?
1. Intro a. Least common state of matter in universe b. Can only exist within a relatively narrow range of temps 2. Properties a. Definite volume and.
Condensed States of Matter: Liquids and Solids Chapter 14
What are Solids, Liquids, and Gases?
Bell Ringer (on Thursday) Divide into four groups.
The 3 States of Matter. Kinetic Theory : Concepts for “States” of Matter All atoms and molecules are always in Motion Molecules in solids, liquids and.
Chapter 10 States of Matter. Section 1: The Kinetic-Molecular Theory of Matter.
Chapter 10 States of Matter Pages The Kinetic-Molecular Theory of Matter …states that particles of matter are always in motion. An _____________.
Chemistry notes Chapter 12. Section 1 “Liquids”  Properties  Definite volume  Takes the shape of its container  Particles are in constant motion 
States of Matter Chapter 3.
Solids, Liquids, and Gases States of Matter. Solids, Liquids, Gases Solids - Atoms and molecules vibrate in a stationary spot Liquids – atoms and molecules.
 Why does water melt at 0 degrees Celsius and vaporize at 100 degrees Celsius?  e_viewer.php?mid=120.
Liquids and Solids. Intermolecular Forces  Intermolecular Forces are the attraction between molecules  They vary in strength, but are generally weaker.
Chapter 10 States of Matter. Section 1: The Kinetic-Molecular Theory of Matter.
Kintetic Molecular Theory
definite volume definite shape regular geometric pattern
Liquids and Solids Chapter 12.
Kinetic Molecular Theory
Chemistry: Chapter 13 States of Matter.
Modern Chemistry Chapter 10 States of Matter
Properties of Liquids The attraction between liquid particles is caused by the intermolecular forces: London dispersion forces dipole-dipole forces hydrogen.
Gases and States of Matter: Unit 8
States of Matter Solids Liquids Gases.
The States of Matter.
Chapter 11 – Liquid and Intermolecular Forces
12-3 Liquids and Solids Liquids
II. Forces of Attraction
Liquids and Solids Chapter 12.
Chapter 13 Phase Changes Notes #8b.
States of Matter, and Phase Change
States of Matter.
Phases of matter: Comparison
Presentation transcript:

Liquids and Solids Chapter 13

I. Comparison of Solids, Liquids and Gases Shape Molecular Forces Density Compressibility Fluidity Rate of Diffusion

I. Comparison of Solids, Liquids and Gases Shape Intermolecular Forces Density Compressibility Fluidity Rate of Diffusion definite geometric shapes shape of container fill the container very strong moderate weak most dense (except H2O) relatively high least dense relatively incompressible very compressible incompressible none yes, it flows yes, they flow yes, they diffuse very well yes, but very slowly yes, but slower than gases

II. Changes of State gas solid liquid

II. Changes of State most energy gas least energy solid liquid deposition evaporation moderate energy least energy sublimation condensation melting solid liquid freezing Question: Which phase changes ADD energy, and which phase changes RELEASE energy?

III. Properties of Liquids A. Surface Tension - pulling together of a liquids SURFACE molecules, creating tighter arrangement B. Vapor Pressure - the gaseous pressure resulting from the vaporization of SURFACE molecules of liquid C. Boiling Point - the temperature at which a liquids vapor pressure equals the atmospheric pressure D. Viscosity – resistance to flow Note: 1) Vaporization occurs at the SURFACE of liquids 2) Boiling occurs WITHIN, as well as the surface of a liquid 3) Boiling Point temperatures can be raised or lowered by a corresponding change to the atmospheric pressure

Surface Tension pulling together of a liquids SURFACE molecules, creating tighter arrangement

Dipole-Dipole Interaction

Hydrogen Bonding

IV. Water and It’s Properties A. Intermolecular hydrogen bonding is responsible for the high boiling point of water: O H note: the H-bondings are additional bonds -- weaker than covalent bonds -- that must be broken before boiling can occur O H O H O H

B. When water freezes, the water molecules arrange themselves into hexagonal patterns: notes: 1) the wider spacing between molecules causes ice to be LESS DENSE than liquid water 2) water is most dense at 4 oC… warmer and colder than this causes expansion 3) the volume of the hexagonal spaces in ice is equal to the volume of ice that is above the water line when floating O H O H O H O H O H

C. Energy requirements for phase changes of water: 1) water requires 1 calorie (4.184 joules) to heat 1 gram of water 1 oC. 2) ice requires 80 calories per gram (6.02 kJ/mol)to melt without any temperature change 3) water requires 540 calories per gram (40.8 kJ/mol) to boil without any temperature change Ex: How many calories are required to melt 50 grams of ice, heat it to 100 oC, then boil it?

V. Phase Diagrams A. Conveniently shows the relationship between temperature, pressure and the physical state of a substance. B. Water has the only phase diagram with a negative slope to the solid/liquid boundary 1) as pressure increases on ice, it liquifies 2) higher pressures cause smaller volumes … 3) … for water, liquid has smaller volume than solid C. Triple Point – when all 3 phases coexist D. Critical Point – 1) temp at which gas can no longer become liquid no matter what the pressure is 2) pressure required to produce liquefaction at the critical temperature

Phase Diagram for Water

Phase Diagram for CO2

VI. Types of Solids A. Crystalline Solids - 1) ionic crystals - metal + nonmetal ex: NaCl; Fe2O3 2) Covalent Network - covalently bonded atoms or molecules forming a large crystal ex: C (diamond); SiO2 (sand) 3) Metallic - metal atoms sharing valence e- ex: Fe; Cu; 4) Covalent Molecular - intermolecular forces between covalent solids ex: ice; frozen gases (dry ice), S8, P4, I2 B. Amorphous Solids - non regularly shaped solids ex: plastics; glass