Properties of Fluids Chapter 14 Section 2. How do ships float? Despite their weight, ships are able to float. This is because a greater force pushing.

Slides:



Advertisements
Similar presentations
Chapter 13 Forces in Fluids.
Advertisements

Properties of Solids and Fluids
Chapter 13 Fluid Pressure.
Properties of Fluids. Buoyancy Fluid = a liquid OR gas Buoyancy = The ability of a fluid (a liquid or a gas) to exert an upward force on an object immersed.
Chapter 7 Section 1 Fluids and Pressure
Chapter 8 Forces in Fluids
Chapter 13 Forces in Fluids.
The tendency or ability of an object to float.
FLUID PRESSURE Physical Science 9 th Jacqueline P. Hancock.
Buoyancy, Density, and Water
Solids Liquids and Gas Laws. Kinetic Theory The three assumptions of the kinetic theory are as follows: 1. All matter is composed of small particles (atoms,
Properties of Fluids 16.2 How do ships float?
Any substance that can change shape or flow easily.
Chapter 11 Notes Forces in Fluids.
14.2 Essential Questions What is Archimedes’ principle?
Section 2 Properties of Fluids
Section 2.  How can a huge ship float? Because the force pushing up on the ship opposes the weight of the ship pushing down  Supporting force is called.
Forces in Fluids Chapter 13 What is pressure? The result of a force acting over a given area. Pressure = Force/Area What label? N/m 2 1 N/m 2 is known.
F. Properties of Fluids 1. Archimedes’ Principle a. Fluids exert an upward force on objects. It is called the buoyant force. b. The buoyant force is equal.
States of MatterSection 3 Pressure 〉 Fluids exert pressure evenly in all directions. –pressure: the amount of force exerted per unit area of a surface.
Properties of Fluids 16-2.
Properties of Fluids 16.2 EQ – What are properties unique to fluids? How can I compare Archimedes’ Principle to Bernoulli’s principle? How can I calculate.
Fluid Pressure Chapter 13 Section 1 Page 390.
16. Chapter 16: Solids, Liquids, and Gases Table of Contents 16.3: Behavior of GasesBehavior of Gases 16.1: Kinetic TheoryKinetic Theory 16.2: Properties.
Properties of Fluids Mr Carter Science. How do ships float? The answer is buoyancy.
Chapter 10.4 Learning Goals
Ch & 11.4 Guided Reading Check
Forces in Fluids Chapter 13. Fluid Pressure  Section 13-1.
Properties of Fluids.
Forces in Fluids Section 6-1 Pressure. Forces in Fluids What is pressure?  A force pushing on a surface How do force and pressure differ?  Your downward.
Chapter 7 Forces in Fluids.
Chapter 3 States of Matter. Matter and Energy Kinetic Theory: matter is made of atoms and molecules and these atoms and molecules act like tiny particles.
Forces and Pressure in Fluids
Pressure – The result of force distributed over an area – Pressure = Force(in Newton's – N)/area (m 2 ) Pascal (Pa) – SI unit for Pressure – Named after.
States of Matter Solids Liquids Gases Plasma Solids Particles are closely packed Most solids have a specific geometric arrangement Have a definite shape.
Chapter 7 - Holt Forces in Fluids. Section 1 pages A fluid is any material that can flows and that takes the shape of its container. Fluids include.
Lesson 2 Chapter 16. Properties of Fluids A fluid is a gas or a liquid A fluid is a gas or a liquid –despite their weight ships are able to float. –greater.
The kinetic theory is an explanation of how particles in matter behave. Kinetic Theory 16.1.
Archimede’s Principle An object immersed in a fluid has an upward (buoyant) force equal to the weight of the fluid it displaces. F B =  gV F B = buoyant.
Pressure Force per unit area Units: Pa (N/m 2 ), lb/in 2, atm, torr, mmHg P = pressure, N (psi) F=force, N (lb) A= area, m 2 (in 2 )
Buoyancy and Density Fluid  matter that flows  liquids and gases Buoyancy  The ability of a fluid to exert an upward force on an object immersed in.
Fluid Pressure Chapter 13 Section 1 Page 390. Fluid Pressure Chapter 13 Section 1 Pg
FORCES IN FLUIDS CHAPTER 11. Section 11-1 Pressure Pressure - related to the word press - refers to the force pushing on a surface.
Buoyancy, Density, and Water
Chapter 12: Forces and Fluids
Pressure Pressure: amount of force per unit of area (pressure = force ÷ area) Can change pressure by changing either the force or the area Which exerts.
Properties of Fluids.
Fluids can exert a force on objects
Physical Science 9 Chapter 16:Solids, Liquids, and Gases
Force In Fluids Chapter 11
Warm – Up Chapter How do particle change from a solid to a liquid? 2. What is the difference between evaporation and boiling? 3. What is sublimation?
Section 3: Fluids Preview Key Ideas Bellringer Pressure Buoyant Force
Gas Laws.
Chapter 16 Notes.
Archimedes Principle Greek mathematician Found that buoyant force on an object is equal to the weight of the fluid displaced by the object.
Chapter 3: Forces in Fluids
Properties of Fluids.
Kinetic Theory Explains how particles in matter behave
Gas Laws Lesson 2.
Chapter 2 Forces in Fluids.
16.1 Kinetic Theory States of Matter: solid, liquid, gas, plasma
Chapter 7: Forces in Fluids
Chapter 3: Forces in Fluids
Fluid Properties Chapter 16 Section 2.
13.1 Fluid Pressure Pressure- force distributed over an area; Pressure= F/area Pressure in Fluids Water pressure increases as depth increases The pressure.
Chapter 16: Solids, Liquids, and Gases Section 2: Properties of Fluids
Properties of Fluids.
Properties of Fluids.
Warm-up viscosity lower
Properties of Fluids.
Presentation transcript:

Properties of Fluids Chapter 14 Section 2

How do ships float? Despite their weight, ships are able to float. This is because a greater force pushing up on the ship opposes the weight—or force—of the ship pushing down.

How do ships float? This supporting force is called the buoyant force. Buoyancy is the ability of a fluid—a liquid or a gas—to exert an upward force on an object immersed in it. If the buoyant force is less than the object’s weight, the object will sink.

Archimedes’ Principle In the third century B.C., a Greek mathematician named Archimedes made a discovery about buoyancy. Archimedes found that the buoyant force on an object is equal to the weight of the fluid displaced by the object.

Density An object will float if its density is less than the density of the fluid it is placed in.

Density Suppose you form a steel block into the shape of a hull filled with air. The steel has the same mass but takes up a larger volume. The overall density of the steel boat and air is less than the density of water. The boat will now float.

Pascal’s Principle Pressure is force exerted per unit area. Blaise Pascal ( ), a French scientist, discovered a useful property of fluids. According to Pascal’s principle, pressure applied to a fluid is transmitted throughout the fluid.

Applying the Principle Hydraulic machines are machines that move heavy loads in accordance with Pascal’s principle. Maybe you’ve seen a car raised using a hydraulic lift in an auto repair shop.

Applying the Principle A pipe that is filled with fluid connects small and large cylinders.

Applying the Principle Pressure applied to the small cylinder is transferred through the fluid to the large cylinder. Because pressure remains constant throughout the fluid, according to Pascal’s principle, more force is available to lift a heavy load by increasing the surface area.

Bernoulli’s Principle According to Bernoulli’s principle, as the velocity of a fluid increases, the pressure exerted by the fluid decreases. One way to demonstrate Bernoulli’s principle is to blow across the top surface of a sheet of paper. The paper will rise.

Bernoulli’s Principle The velocity of the air you blew over the top surface of the paper is greater than that of the quiet air below it. As a result, the air pressure pushing down on the top of the paper is lower than the air pressure pushing up on the paper. The net force below the paper pushes the paper upward.

Airplanes Bernoulli’s Principal is what keeps airplanes in the air. As air flows around the wing of the plane, the air on top is forced to travel a longer distance than the air on the bottom. This makes the velocity in the top air higher than the velocity of the bottom air. Higher velocity in fluids means lower pressure. This lower pressure creates lift.

Bernoulli’s Principle Another application of Bernoulli’s principle is the hose-end sprayer.

Bernoulli’s Principle This allows the water in the hose to flow at a high rate of speed, creating a low pressure area above the strawlike tube. The concentrated chemical solution is sucked up through the straw and into the stream of water. The concentrated solution is mixed with water, reducing the concentration to the appropriate level and creating a spray that is easy to apply.

Fluid Flow Another property exhibited by fluid is its tendency to flow. The resistance to flow by a fluid is called viscosity. When a container of liquid is tilted to allow flow to begin, the flowing particles will transfer energy to the particles that are stationary.

Fluid Flow In effect, the flowing particles are pulling the other particles, causing them to flow, too. If the flowing particles do not effectively pull the other particles into motion, then the liquid has a high viscosity, or a high resistance to flow. If the flowing particles pull the other particles into motion easily, then the liquid has low viscosity, or a low resistance to flow.