Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,

Slides:



Advertisements
Similar presentations
High-resolution spectroscopy with a femtosecond laser frequency comb Vladislav Gerginov 1, Scott Diddams 2, Albrecht Bartels 2, Carol E. Tanner 1 and Leo.
Advertisements

Development of an External Cavity Quantum Cascade Laser for High- Resolution Spectroscopy of Molecular Ions JACOB T. STEWART, BRADLEY M. GIBSON, BENJAMIN.
Sub-Doppler Resolution Spectroscopy of the fundamental band of HCl with an Optical Frequency Comb ○ K. Iwakuni, M. Abe, and H. Sasada Department of Physics,
Tunable Laser Spectroscopy Referenced with Dual Frequency Combs International Symposium on Molecular Spectroscopy 2010 Fabrizio Giorgetta, Ian Coddington,
Results The optical frequencies of the D 1 and D 2 components were measured using a single FLFC component. Typical spectra are shown in the Figure below.
Broadband Cavity Enhanced Absorption Spectroscopy With a Supercontinuum Source Paul S. Johnston Kevin K. Lehmann Departments of Chemistry & Physics University.
Dual-Comb Spectroscopy of C2H2, CH4 and H2O over 1.0 – 1.7 μm
Time-Resolved Frequency Comb Spectroscopy of Transient Free Radicals in the Mid-IR Bryce J Bjork, Adam J. Fleisher, Bryan Changala, Thinh Quoc Bui, Kevin.
Applications of Cavity-Enhanced Direct Frequency Comb Spectroscopy Kevin Cossel Ye Group JILA/University of Colorado-Boulder OSU Symposium on Molecular.
Dylan Yost, Arman Cingoz, Tom Allison and Jun Ye JILA, University of Colorado Boulder Collaboration with Axel Ruehl, Ingmar Hartl and Martin Fermann IMRA.
Coherent Generation of Broadband Pulsed Light in the SWIR and MWIR using an All Polarization-Maintaining Fiber Frequency Comb Source H. HOOGLAND, M. ENGELBRECHT,
National Institute of Standards and Technology Broadband Spectroscopy of CO 2 Bands Near 2μm Using a Femtosecond Mode-Locked Laser ISMS Session.
High-speed ultrasensitive measurements of trace atmospheric species 250 spectra in 0.7 s David A. Long A. J. Fleisher, D. F. Plusquellic, J. T. Hodges.
Spectroscopy with comb-referenced diode lasers
New High Precision Linelist of H 3 + James N. Hodges, Adam J. Perry, Charles R. Markus, Paul A. Jenkins II, G. Stephen Kocheril, and Benjamin J. McCall.
ULTRA-BROAD BANDWIDTH CAVITY ENHANCED ABSORPTION SPECTROSCOPY Paul S. Johnston Kevin K. Lehmann Department of Chemistry University of Virginia.
Mikael Siltanen,1 Markus Metsälä,1
High Precision Mid-Infrared Spectroscopy of 12 C 16 O 2 : Progress Report Speaker: Wei-Jo Ting Department of Physics National Tsing Hua University
Tunable Mid-IR Frequency Comb for Molecular Spectroscopy
Lecture 5. Tunable Filters Δf defines as the frequency difference between the lowest- and the highest-frequency channels and  f as the spacing between.
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall Chemistry Department, University of Illinois at Urbana-Champaign.
Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois.
__–––– Sensitivity Scaling of Dual Frequency Combs Ian Coddington, Esther Baumann, Fabrizio Giorgetta, William Swann, Nate Newbury NIST, Boulder, CO
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Broadband Mid-infrared Comb-Resolved Fourier Transform Spectroscopy Kevin F. Lee A. Mills, C. Mohr, Jie Jiang, Martin E. Fermann P. Masłowski.
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
Multiplexed Detection of CO2 using a Novel Dual-Comb Spectrometer
Haifeng Huang and Kevin K. Lehmann
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
Fiber-laser-based NICE-OHMS
Amanda L. Steber, Brent J. Harris, Justin L. Neill, Kevin K. Lehmann, Brooks H. Pate Department of Chemistry, University of Virginia, McCormick Rd., P.O.
High Precision, Sensitive, Near-IR Spectroscopy in a Fast Ion Beam Michael Porambo, Holger Kreckel, Andrew Mills, Manori Perera, Brian Siller, Benjamin.
Development of a System for High Resolution Spectroscopy with an Optical Frequency Comb Dept. of Applied Physics, Fukuoka Univ., JST PRESTO, M. MISONO,
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall Chemistry Department, University of Illinois at Urbana-Champaign.
Precision Laser Spectroscopy of H 3 + Hsuan-Chen Chen 1, Jin-Long Peng 2, Takayoshi Amano 3,4, Jow-Tsong Shy 1,5 1 Institute of Photonics Technologies,
Linhan Shen1, Thinh Bui1, Lance Christensen2, Mitchio Okumura1
Cavity-Enhanced Direct Frequency Comb Velocity Modulation Spectroscopy Laura Sinclair William Ames, Tyler Coffey, Kevin Cossel Jun Ye and Eric Cornell.
Direct Comb Spectroscopy of Buffer-Gas Cooled Molecules Ben Spaun ISMS, 2015 JILA, NIST and University of Colorado at Boulder.
High Precision Infrared Spectroscopy of OH + Charles R. Markus, Adam J. Perry, James N. Hodges, G. Stephen Kocheril, Paul A. Jenkins II, Benjamin J. McCall.
Frequency Comb Velocity-Modulation Spectroscopy of HfF + Kevin Cossel Laura Sinclair, Tyler Coffey, Jun Ye, and Eric Cornell OSU 2011 Acknowledgements:
Numerical and experimental study of the mode tuning technique effects. Application to the cavity ring-down spectroscopy. J. Remy, G.M.W. Kroesen, W.W.
Tze-Wei Liu Y-C Hsu & Wang-Yau Cheng
California Institute of Technology
Broadband Comb-resolved Cavity Enhanced Spectrometer with Graphene Modulator C.-C. Lee, T. R. Schibli Kevin F. Lee C. Mohr, Jie Jiang, Martin E. Fermann.
1 Dual Etalon Frequency Comb Spectrometer David W. Chandler and Kevin E. Strecker Sandia National Laboratories – Biological and Energy Sciences Division.
Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,
Broadband High-resolution Spectroscopy with Fabry-Perot Quantum Cascade Lasers Yin Wang and Gerard Wysocki Department of Electrical Engineering Princeton.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Frequency-comb referenced spectroscopy of v 4 =1 and v 5 =1 hot bands in the 1. 5 µm spectrum of C 2 H 2 Trevor Sears Greg Hall Talk WF08, ISMS 2015 Matt.
Brian Siller, Michael Porambo & Benjamin McCall Chemistry Department University of Illinois at Urbana-Champaign.
Frequency combs – evolutionary tree Overview Frequency Metrology Measuring Frequency Gaps Frequency Combs as Optical Synthesizers Time Domain Applicatons.
INDIRECT TERAHERTZ SPECTROSCOPY OF MOLECULAR IONS USING HIGHLY ACCURATE AND PRECISE MID-IR SPECTROSCOPY Andrew A. Mills, Kyle B. Ford, Holger Kreckel,
Quantum Optics meets Astrophysics Frequency Combs for High Precision Spectroscopy in Astronomy T. Wilken, T. Steinmetz, R. Probst T.W. Hänsch, R. Holzwarth,
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
Optical Frequency Comb Referenced Sub-Doppler Resolution Difference-Frequency-Generation Infrared Spectroscopy K. Iwakuni, S. Okubo, H. Nakayama, and H.
Linhan Shen1, Thinh Bui1, John Eiler2, Mitchio Okumura1
Mingyun Li & Kevin Lehmann Department of Chemistry and Physics
Ultrafast goes Ultra-Sensitive:
International Symposium on Molecular Spectroscopy, 2017
Multiplexed saturation spectroscopy with electro-optic frequency combs
Direct Absorption Spectroscopy with Electro-optic Frequency Combs
Present myself and the group Present our current research on: “title”
Fiber Laser Preamplifier
69th. International Symposium on Molecular Spectroscopy
Two-Photon Absorption Spectroscopy of Rubidium
Charles R. Markus, Adam J. Perry, James N. Hodges, Benjamin J. McCall
Rose-Hulman Institute of Technology Terre Haute, IN
High resolution rovibrational spectroscopy of large molecules using infrared frequency combs and buffer gas cooling Bryan Changala1, Ben Spaun1, David.
Precision Control Optical Pulse Train
Presentation transcript:

Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel, Jun Ye JILA|NIST and University of Colorado - Boulder Lora Nugent-Glandorf, Florian Adler, Tyler Neely, Scott A. Diddams National Institute of Standards and Technology Tim Dinneen Precision Photonics FA 11 The 67 th OSU International Symposium on Molecular Spectroscopy – June 22, 2012

Cavity-Enhanced Direct FCS 1.Mode-locked laser (fs fiber laser) 2.Sample interrogation (high-finesse enhancement cavity) 3.Dispersive detection system (VIPA) M.J. Thorpe et al. Science 311, 1595 (2006). CE-DFCS

1. Mode-locked laser T.R. Schibli et al. Nat. Photonics 2, 355 (2008). F. Adler et al. Opt. Lett. 34, 1330 (2009). >10 W 110 fs 137 MHz 1070 nm Yb:Fiber Comb Laser

1. Mode-locked laser F. Adler et al. Opt. Lett. 34, 1330 (2009). Optical parametric oscillator Tunable from 2.8 – 4.8 μm (2000 – 3500 cm -1 ) 150 nm bandwidth at 3.75 μm (100 cm -1 fwhm) > 1 W power from 3.0 – 4.0 μm

2. Sample Interrogation M.J. Thorpe et al. Opt. Express 16, 2387 (2008). A. Foltynowicz et al. Appl. Phys. B. doi: /s (2012). Mode-locked laser VIPA spectrometer High finesse optical cavity with intra-cavity gas sample

3. Dispersive detector InSb Camera M.J. Thorpe et al. Opt. Express 16, 2387 (2008). M.J. Thorpe and J. Ye, Appl. Phys. B 91, 397 (2008). M.J. Thorpe et al. Science 311, 5767 (2006). S.A. Diddams et al. Nature 445, 627 (2007). MIR VIPA R in = 99.95% R out = 98.0% InSb photodiode array 320 x 256 pixels LN 2 cooled Collectively, these components create a power tool for the sensitive measurement of absorption spectra over a broadband on the μs timescale

VIPA Characterization and Spectroscopy Measure the VIPA spectrometer resolution and free spectral range – Fabry-Perot Comb Filter Cavity with FSR = 2.0 GHz – Spectroscopy Cavity with FSR = 546 MHz and Finesse = 1200 Record broadband molecular spectra on the millisecond (ms) timescale – 100 ppm CH 4 in N 2 at a total pressure of 30 Torr

Comb-Cavity Coupling F. Adler et al. Annu. Rev. Anal. Chem. 3, 175 (2010)

Construction of Filter Cavity S.A. Diddams et al. Nature 445, 627 (2007). nFSR (GHz)L (cm) Exact n value must be know to precisely determine the filtered comb mode spacing required for VIPA calibration.

2.05 GHz Filter Cavity S.A. Diddams et al. Nature 445, 627 (2007). Change in cavity length (L) vs. Change in cavity free spectral range (FSR) Center point is 14, 15, or 16 x f rep L = c / (2FSR) At 15 x f rep, the comb line spacing is filtered to 2.05 GHz

Comb Mode Resolution L. Nugent-Glandorf et al. Opt. Lett., in press (2012). arXiv: pixels Detector Image Plane Grating Dispersion VIPA Dispersion InSb Camera Observed FWHM = 600 MHz 15°

VIPA Performance S. Xiao et al. IEEE J. Quant. Elec. 40, 420 (2004). L. Nugent-Glandorf et al. Opt. Lett., in press (2012). arXiv: d

Direct FCS Cavity Characterization

Direct FCS Cavity N 2 reference 0.2% N 2 O in N 2 at 40 torr Cavity finesse ~1000

Direct FCS Cavity K.C. Cossel et al, Appl. Phys. B, 100, 917 (2010). L.S. Rothman et al. J. Quant. Spectrosc. Radiat. Transfer (2005). Wavelength (nm) 2,300 comb modes in the above spectral bandwidth. Wavelength (nm)

Molecular Gas Dynamics L. Nugent-Glandorf et al. Opt. Lett., in press (2012). arXiv: Noise 5 x noise floor (ms) 1 x cm -1 (5 avr., 42 ms, 200 m path length) 640 x 512 pixel camera 120 Hz repetition rate CH 4 gas cell filling dynamics - NIST

Future: MIR Reaction Dynamics A. Foltynowicz et al. Appl. Phys. B. doi: /s (2012). L. Nugent-Glandorf et al. Opt. Lett., in press (2012). arXiv: Enhancement factor of ≥ 300 leads to mW/mode of intracavity power 5,000 lasers available for cavity-enhanced spectroscopy 100 cm -1 simultaneous bandwidth Integration time as low as 10 μs (camera limit) Experimental repetition rate of up to 400 Hz (camera limit) MIR Comb VIPA and Camera Inlet PZT Outlet

Acknowledgements Bryce Bjork, Kevin C. Cossel, Jun Ye JILA|NIST and CU Lora Nugent-Glandorf, Florian Adler, Tyler Neely, Scott A. Diddams National Institute of Standards and Technology Tim Dinneen Precision Photonics L. Nugent-Glandorf et al. Optics Letters (2012). arXiv:

Virtually Imaged Phased Array M. Shirasaki Fujitsu Sci. Tech J. 35, 113 (1999).

Noise Analysis Insert Citation Here

Signal Averaging Insert Citation Here 1 FSR Single 2ms shot20 averaged shots

Frequency Comb Insert Citation Here Frequency Domain Frequency comb Cavity modes Cavity mode structure: Frequency comb structure: Time Domain ADD SINGLE PULSE VS. PULSE TRAIN IMAGE HERE

1. Mode-locked laser T.R. Schibli et al. Nat. Photonics 2, 355 (2008). F. Adler et al. Opt. Lett. 34, 1330 (2009). Yb:fiber mode-locked laser >10 W 110 fs 137 MHz 1070 nm OPO