Presentation is loading. Please wait.

Presentation is loading. Please wait.

Present myself and the group Present our current research on: “title”

Similar presentations


Presentation on theme: "Present myself and the group Present our current research on: “title”"— Presentation transcript:

1 Present myself and the group Present our current research on: “title”
Kerr lens mode-locked femtosecond thin-disk lasers: towards powerful sub-50 fs oscillators Norbert Modsching, Clément Paradis, François Labaye, Maxim Gaponenko, Valentin J. Wittwer, Thomas Südmeyer Laboratoire Temps-Fréquence, Université de Neuchâtel, Neuchâtel, Switzerland Present myself and the group Present our current research on: “title” 

2 Motivation for high-power laser sources
Applications Need High field science Wavelength conversion Frequency comb generation Sub-100-fs pulses High repetition rate High average power (beneficial)

3 Power-scalable ultrafast laser architectures
Fiber amplifier Innoslab amplifier P. Russbueldt et al., Opt. Lett. 35, 4169–4171 (2010). T. Eidam et al., Opt. Lett. 35, 94–96 (2010). Thin-disk oscillator / amplifier ddisk ≈100 μm A. Giesen et al., Appl. Phys. B 58, 365–372 (1994). JP Negel et al., Opt. Express 23, 21064–21077 (2015).

4 Motivation for high-power laser oscillators
Applications Need High field science Wavelength conversion Frequency comb generation Sub-100-fs pulses High repetition rate High average power (beneficial) Thin-disk laser (TDL) oscillators External spectral broadening and pulse compression required Photoelectron imaging spectroscopy High harmonic generation Mid-infrared generation T. Südmeyer et al., Nat. Photonics 2, 599–604 (2008) F. Emaury et al., Optica 2, 980–984 (2015) I. Pupeza et al., Nat. Photonics 9, 721–724 (2015)

5 Motivation for high-power laser oscillators
Applications Need High field science Wavelength conversion Frequency comb generation Sub-100-fs pulses High repetition rate High average power (beneficial) Thin-disk laser (TDL) oscillators First TDL oscillator delivering: >10 W, sub-100-fs 1.6 W, 35 fs References: C. Paradis et al., Opt. Express 25, (2017)

6 Key ingredients for short pulses from Yb-based oscillators
Key ingredients for short pulses from Yb-based oscillators Pulse duration timeline Mode locking schemes for TDLs [1] J. A. der Au et al., Opt. Lett. 25, 859–861 (2000). SESAM Taken from: A. Diebold et al., Opt. Express 24, (2016). Yb:YAG ETH Kerr lens mode locking [3] O. Pronin et al., Opt. Lett. 36, 4746–4748 (2011). [1] [3] Yb:YAG MPQ Yb:LuScO ETH [4] [4] J. Zhang et al., in CLEO (2015), PDA1. [2] C. Schriber et al., in ASSL (2014), AF1A.4. [2] Yb:CALGO ETH 5 mm Gain materials Dlem FWHM (nm) k (Wm-1K-1) (ndot ~7×1020 cm-3) Melting temp. (°C) Yb:YAG 9 ( ↔ 124 fs) 7.5 1940 Dlem FWHM (nm) k (Wm-1K-1) (ndot ~7×1020 cm-3) Melting temp. (°C) Yb:YAG 9 ( ↔ 124 fs) 7.5 1940 Yb:Lu2O3 13 ( ↔ 87 fs) 12.3 2400 Ytterbium doped Lutetium oxyde: Yb:Lu2O3: Yb:LuO

7 Mode locking results: Yb:Lu2O3 thin-disk laser
Mode locking results: Yb:Lu2O3 thin-disk laser Pulse duration timeline CM1 OC KM HA CM3 0.8 m 0.4 m Pump Thin disk CM2 Laser cavity Yb:Lu2O3 61 MHz repetition rate 3.5 W 2 W [4] [4] J. Zhang et al., in CLEO (2015), PDA1. [2] C. Schriber et al., in ASSL (2014), AF1A.4. [2] 37 fs, 1.5 W [5] [5] Sévillano et al., in CLEO (2014), STu2E.1. Gain materials Mode-locked performance Dlem FWHM (nm) k (Wm-1K-1) (ndot ~7×1020 cm-3) Melting temp. (°C) Yb:YAG 9 ( ↔ 124 fs) 7.5 1940 Yb:Lu2O3 13 ( ↔ 87 fs) 12.3 2400 Pulse duration 49 fs Output power 4.5 W Spectral bandwidth FWHM 24 nm GDD per RT -1100 fs² Output coupling rate 2.7 % TBP (ideal sech2: 0.315) 0.322 Opt-to-opt efficiency 4.7 % Pulse duration 49 fs 35 fs Output power 4.5 W 1.6 W Spectral bandwidth FWHM 24 nm 34 nm GDD per RT -1100 fs² -1000 fs² Output coupling rate 2.7 % 0.9 % TBP (ideal sech2: 0.315) 0.322 0.330 Opt-to-opt efficiency 4.7 % 2.1 % 40 fs 1.1 W 35 fs 280 mW 32 fs 10 mW *inversion level: 0.1 C. Paradis et al., Opt. Express 25, 14918–14925 (2017).

8 Mode locking results: Power scaling
Mode locking results: Power scaling Power scaling of KLM TDL Laser cavity Yb:Lu2O3 CM1 OC KM HA CM3 0.8 m 0.4 m Pump Thin disk CM2 CM1 OC KM HA CM3 0.8 m 0.4 m Pump Thin disk CM2 [1] J. Brons et al., Opt. Lett. 41, 3567 (2016). 40 fs 1.1 W 35 fs 280 mW 32 fs 10 mW

9 Towards shorter pulse durations
Towards shorter pulse durations Pulse duration timeline Laser cavity Yb:CALGO Proof-of-principle demonstration Low quality disk 124 MHz repetition rate Yb:YAG Yb:LuScO Yb:CALGO CM2 OC KM HA 0.9 m 0.3 m CM1 Pump Thin disk Yb:Lu2O3 26 mW [6] [6] J. Ma et al., Opt. Lett. 41, 890 (2016). Mode-locked performance Gain materials Dlem FWHM (nm) k (Wm-1K-1) (ndot ~7×1020 cm-3) Melting temp. (°C) Yb:YAG 9 ( ↔ 124 fs) 7.5 1940 Yb:Lu2O3 13 ( ↔ 87 fs) 12.3 2400 Dlem FWHM (nm) k (Wm-1K-1) (ndot ~7×1020 cm-3) Melting temp. (°C) Yb:YAG 9 ( ↔ 124 fs) 7.5 1940 Yb:Lu2O3 13 ( ↔ 87 fs) 12.3 2400 Yb:CALGO 62 ( ↔ 18 fs) 4 1840 Pulse duration 30 fs Output power 150 mW Spectral bandwidth FWHM 45 nm GDD per RT -1000 fs² Output coupling rate 0.3 % TBP (ideal sech2: 0.315) 0.369 Opt-to-opt efficiency 0.1 % Ytterbium doped Calcium Gadolinum Aluminate: Yb:CaGdAlO4: Yb:CALGO Submitted to Optics Letters *inversion level: 0.1

10 Conclusions and outlook
Conclusions and outlook Key for short pulse generation First Yb:CALGO KLM TDL Combination of: Thin-disk laser oscillator Kerr lens mode locking Broadband gain material *inversion level: 0.1 Record performances from an Yb-based oscillator Shortest pulses from Yb-doped bulk and thin-disk lasers Yb:Lu2O3 [1] Yb:CALGO [2] Highest average power from any oscillator in sub-50-fs pulses [1] C. Paradis et al., Opt. Express 25, 14918–14925 (2017). [2] submitted to Optics Letters Wavelength conversion Frequency comb generation Applications Powerful sub-50-fs pulses Apply KLM scaling laws Broadband optical coating optimization Optimize disk quality and parameters

11 Thank you for your attention
Acknowledgments Thank you for your attention UniNE LTF group


Download ppt "Present myself and the group Present our current research on: “title”"

Similar presentations


Ads by Google