Presentation is loading. Please wait.

Presentation is loading. Please wait.

Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois.

Similar presentations


Presentation on theme: "Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois."— Presentation transcript:

1 Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois at Urbana-Champaign

2 Outline  Motivation  Spectroscopic Techniques for Ions: N 2 +  Mid-IR Instrument  H 3 + Spectroscopy  Conclusions

3 Astrochemistry Ions reactive intermediates in ISM ~ 20 ions have been observed Many carbo-cations have transitions in mid-IR Lab spectra help observations B.J. McCall. Ph.D. Thesis, U. Chicago, 2001.

4 Indirect THz Spectroscopy Combination differences extract energy spacings for rotational levels. Useful for ions with transitions in the THz region - Herschel, SOFIA

5 Fundamental Science Fluxional species Spectrum remains unassigned WI07 up next! White et al. Science, 284, 135 (1999). CH 5 +

6 Motivation General, Sensitive, High Precision, Mid-IR Spectrometer for Molecular Ions General – Multiple Ions of Interest Sensitive – Weak Transitions & Trace Detection High Precision – Reduced Uncertainty in Combination Differences

7 Velocity Modulation Spectroscopy Cations go to cathode Plasma Discharge Cell +HV-HV S.K. Stephenson and R. J. Saykally. Chem. Rev., 105, 3220-3234, (2005).

8 Velocity Modulation Spectroscopy Cations go to cathode Doppler Shifted Plasma Discharge Cell +HV-HV Plasma Discharge Cell +HV-HV Laser Detector S.K. Stephenson and R. J. Saykally. Chem. Rev., 105, 3220-3234, (2005).

9 Velocity Modulation Spectroscopy Cations go to cathode Doppler Shifted Plasma Discharge Cell -HV+HV Plasma Discharge Cell Laser Detector Plasma Discharge Cell Laser Detector S.K. Stephenson and R. J. Saykally. Chem. Rev., 105, 3220-3234, (2005).

10 Velocity Modulation Spectroscopy Cations go to cathode Doppler Shifted AC Driven – Absorption Profile Modulated Velocity Modulation Provides Ion-Neutral Discrimination Plasma Discharge Cell Laser Detector Plasma Discharge Cell Laser Detector S.K. Stephenson and R. J. Saykally. Chem. Rev., 105, 3220-3234, (2005).

11 Velocity Modulation of N 2 +

12 Heterodyne Spectroscopy Creates fm-triplet with spacing typically in the rf Mixers demodulate rf signal Sensitive to relative sizes/phases of sidebands Absorption/Dispersion - 90 o Phase Separation “Zero background” Operation at rf frequencies reduces 1/f noise Laser Detector EOM Signal

13 Velocity Modulation of N 2 + Velocity Modulation & Heterodyne at 1 GHz

14 Cavity Enhancement Laser Cavity Detector Enhances Pathlength Increases Intracavity Power Allows saturation of rovibrational transitions – sub-Doppler features Requires active locking to maintain resonance – PDH locking

15 Velocity Modulation in a Cavity Velocity Modulation Provides Ion-Neutral Discrimination

16 Velocity Modulation Ion Signal Encoded at 2x the Plasma Frequency Velocity Modulation Provides Ion-Neutral Discrimination

17 Cavity Enhanced Velocity Modulation Spectroscopy of N 2 + PZT Detector EOM Laser Lock-In Amplifier 2f B. M. Siller et al., Opt. Lett., 35, 1266-1268. (2010)

18 NICE-OHVMS Large Signal Small Noise Cavity Enhancement Heterodyne Spectroscopy NICE-OHVMS N oise I mmune C avity E nhanced - O ptical H eterodyne V elocity M odulation S pectroscopy Velocity Modulation Sensitivity to Ions B. M. Siller et al., Opt. Exp., 19, 24822-24827. (2011)

19 NICE-OHVMS Heterodyne sidebands at the cavity FSR allows the combination of heterodyne spectroscopy with a cavity. Cavity Modes Laser

20 NICE-OHVMS Lock-In Amplifier Absorption Signal Plasma Frequency Detector Lock-In Amplifier Dispersion Signal 90° Phase Shift 1 × Cavity FSR Laser EOM 2f

21 Comparison of Techniques on N 2 + NICE- OHVMS

22 Mid-IR Instrument Optical Parametric Oscillator (OPO) High optical power Saturation of rovibrational transitions Spans 3.2 – 3.9 μ m range

23 OPO Light Generation Yb Doped Fiber Laser OPO EOM Amp 1064 nm

24 OPO Light Generation Signal 1.5-1.6  m Pump 1064 nm Idler 3.2-3.9  m Periodically Poled Li:NbO 3

25 Ion Production/Velocity Modulation ~ AC HV 40 kHz L-N 2 In L-N 2 Out Gas In Liquid Nitrogen Cooled Positive Column Discharge Cell- ”Black Widow”

26 Ion Production

27 Mid-IR Instrument OPO YDFL EOM Lock-In Amplifier Absorption Signal Lock-In Amplifier Dispersion Signal Wave- meter 40 kHz Plasma Frequency 80 MHz 1 × Cavity FSR 90 o Phase Shift IPSIPS 2f i  p  s

28 H 3 + Spectra Sensitivity = 2 x 10 -9 cm -1 Hz -1/2 Shot Noise Limit = 8 x 10 -11 cm -1 Hz -1/2 Signal

29 H 3 + Spectra S/N ~ 500 Precision of Line Center ~ 300 kHz Signal

30 Summary & Conclusions Constructed a general high precision mid-IR spectrometer Demonstrated the first NICE-OHVMS spectra of H 3 + 1.5 orders of magnitude from the shot noise limit

31 Acknowledgements McCall Group with Special thanks to: Brian Siller & Joseph Kelly NSF GRF# DGE 11-44245 FLLW Springborn Endowment


Download ppt "Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois."

Similar presentations


Ads by Google