Chapter 25 What is an animal?

Slides:



Advertisements
Similar presentations
What Is an Animal? Biology Post Falls HS. Characteristics Heterotroph Movement (and sessile) Energy from nutrients Eukaryotic with adaptations.
Advertisements

Characteristics of Life
ANIMAL DIVERSITY. YOU MUST KNOW… THE CHARACTERISTICS OF ANIMALS THE STAGES OF ANIMAL DEVELOPMENT HOW TO SORT THE ANIMAL PHYLA BASED ON SYMMETRY, DEVLOPMENT.
ANIMAL DIVERSITY.
Animal Kingdom.
Kingdom Animalia Zoology – the study of animals. Summary Animals are multicellular and eukaryotic. consume and digest organic materials thereby being.
Click on a lesson name to select. Chapter 24 Introduction to Animals Section 1: Animal Characteristics Section 2: Animal Body Plans Section 3: Sponges.
Chapter 25: What is an Animal?
Body Plans and Adaptations. Symmetry: Shape and balance in proportions of the organism –Asymmetry: without symmetry, no pattern to the body plan. Body.
Intro to Animals. Animals Invertebrates (animals without a backbone) Porifera Cnidaria Worms Mollusks Echinoderms Arthropods.
Introduction to Animals
Chapter 32 – Animal Diversity
23.1 Animal Characteristics Animals Animal Characteristics Multicellular Heterotrophic Lack cell walls Sexual Reproduction Movement Specialization.
Unit 8 Chapter 25 What is an animal?
Phyla Names Body Regions and Symmetry Tissue Development and Cleavage.
Characteristics of animals Feeding- Must consume food. Does not produce it’s own food. Heterotrophic Respiration- Takes in oxygen and gives off CO2 Circulation-Has.
Introduction to Animals. General Characteristics All animals are heterotrophic Different digestive systems Animals are either invertebrates or vertebrates.
ANIMAL KINGDOM.
What is an Animal? Chapter 25 TURBO BLAST. Why are animals classified as one kingdom? All animals are: – Eukaryotic, multicellular – Able to move in specific.
Chapter 26 Introduction to the Animal Kingdom. What is an animal?  A. All heterotrophs  B. Multicellular  C. Eukaryotic cells  D. Do not have a.
CHARACTERISTICS OF ANIMALS: WELCOME TO YOUR KINGDOM! Adapted from Kim Foglia - April 2015.
Animal Characteristics. Characteristics ► Eukaryotic ► Multicellular ► Ways of moving that help them reproduce, obtain food and protect themselves ► Have.
Animal Characteristics 1. Eukaryotes 2. Multicellular 3. No cell walls or chloroplasts 4. Heterotrophic.
What is an Animal?. Characteristics of Animals Animals are eukaryotic, multicellular organisms Cells do not have cell walls Can move in some way All animals.
An Introduction to Animal Diversity Chapter 32. Characteristics of Animals Multi-cellular Heterotrophic eukaryotes - ingestion Lack cell walls – collagen.
Chapter 25- Intro to Animals. I. Characteristics A. Kingdom Anamalia 1. Multicellular 2. heterotrophic 3. eukaryotic 4. lack cell walls.
Chapter 25 Biology Auburn High School p. 692 – 711
KINGDOM ANIMALIA.
Click on a lesson name to select. Chapter 24 Introduction to Animals Section 1: Animal Characteristics Section 2: Animal Body Plans.
Introduction to Animal Kingdom
What is an Animal? Chapter 25. Characteristics of Animals Animals obtain food  Sessile – Organisms that are permanently attached to a surface  Sessile.
What is an Animal? Chapter 25. Characteristics of Animals Animals obtain food  Sessile – Organisms that are permanently attached to a surface  Sessile.
CH 24 WHAT IS AN ANIMAL? CHARACTERISTICS OF ALL ANIMALS Eukaryotic Multicellular Specialized cells (tissues & organs) Ingestive heterotrophs 1.5 million.
What is an Animal? Eukaryotes Multicellular Heterotrophs Have ways to move, reproduce, obtain food, protect themselves; lots of kinds of specialized cells.
Chapter 25 “What is an Animal” Development of Animals Most animals develop from a single, fertilized egg cell called a zygote. After fertilization the.
Animals. What is an animal? Eukaryotic multicellular organisms Heterotrophs Digest food within body Can move (for what purposes?) No cell walls.
Animals Chapter 25.
What is an Animal? Chapter 25. Characteristics of Animals Animals are: eukaryotic, multi- cellular organisms with ways of moving that help them reproduce,
Animal Introduction. Animal Characteristics Multicellular Eukaryotic - have nucleus Specialized cells & tissues Heterotrophic (consumer) Capable of.
CH 24 WHAT IS AN ANIMAL?. Crash Course  Comparative Anatomy: What Makes Us Animals? Comparative Anatomy: What Makes Us Animals?
ANIMAL KINGDOM. ANIMAL CHARACTERISTICS 1) Heterotrophic 2) Eukaryotic 3) Multicellular 4) lack cell walls 5) organized by body plan 6) invertebrates (95%)and.
 Heterotrophs  Kingdom animalia  Multicellular  Eukaryotic  Cells lack cell walls.
Domain: Eukarya Kingdom: Animalia Evolutionary trends among organisms within the Kingdom Animalia.
Kingdom Animalia The animals. The animal kingdom goes from the most basic creatures that have no true tissues, digestive cavity, brain, organs or backbone.
Body Plans and Adaptations A;_ylu=X3oDMTE0ZHQwOXYwBGNvbG8DZ3ExBHBvcwMxBHZ0aWQDQjE3MjJf.
UWhat is an Animal?
ANIMAL CHARACTERISTICS. Common characteristics to all animals Eukaryotic Multicellular Ability to move ( most striking characteric) Heterotrophs tissues.
Stages of Animal Development and Body Form.
What is an Animal?.
Protostome Animals(animals that form mouth first)
Introduction to animals
Intro to Zoology What is an animal?.
An introduction to animal diversity
Introduction to the Animal Kingdom
What is An Animal?.

Animals.
An Introduction to Animal Diversity
Kingdom Animalia.
Chapter 26 Introduction to the animal kingdom
CH 24 WHAT IS AN ANIMAL?.
Characteristics of Animals
Chapter 26 Introduction to the animal kingdom
CH 24 WHAT IS AN ANIMAL?.
Intro to Zoology What is an animal?.
CH 24 WHAT IS AN ANIMAL?.
Introduction to Animals
Characteristics of Animals
Typical Animal Characteristics
Chapter 26 Introduction to the animal kingdom
Presentation transcript:

Chapter 25 What is an animal? Sections 1 and 2 Typical Animal Characteristics Body Plans and Adaptations

Characteristics of All Animals: All eukaryotic. All multicellular organisms. All have cells without cell walls. All are heterotrophic.

Characteristics of All Animals: All animals must digest their food within individual cells or in an internal cavity. Some of the digested food is stored as fat or glycogen to use as a source of energy at a later time.

Characteristics of Some Animals: Most have ways of moving that help them reproduce, obtain food, and protect themselves. Most have specialized cells that form tissues and organs.

Characteristics of Some Animals: Some organisms are sessile: Organisms that are permanently attached to a surface. Do not expend much energy to obtain food. Examples: Adult forms of coral and sponges.

Development of Animals Most animals reproduce sexually.

Development of Animals A zygote is formed when female egg cells are fertilized by male sperm cells. Fertilization may be internal or external.

Development of Animals The zygote divides through mitosis to form two cells in a process called cleavage. Once cell division has begun the zygote becomes an embryo.

Development of Animals The two cells further divide by mitosis into four cells, and so on, until a cell- covered fluid-filled ball called a blastula is formed.

Development of Animals After the formation of the blastula, cell division continues. The cells on one side of the blastula move inward to form a structure made up of two layers of cells with an opening at one end called a gastrula.

Development of Animals Gastrula The layer of cells on the outer surface of the gastrula is called the ectoderm and eventually develops into skin and nervous tissue.

Development of Animals Gastrula The layer of cells on the inner surface of the gastrula is called the endoderm and eventually develops into the digestive tract and organs for digestion.

Development of Animals Gastrula In some animals the cells of the gastrula further divide into a third layer called the mesoderm, located between the ectoderm and the endoderm. The mesoderm eventually forms the muscles, circulatory system, excretory system, and sometimes the respiratory system.

Development of Animals Protostomes vs. Deuterostomes When the opening of the gastrula develops into a mouth the animal is called a protostome. Examples: snails, earthworms, and insects.

Development of Animals Protostomes vs. Deuterostomes When the mouth of the organism is not developed from the opening to the gastrula, the animal is called a deuterostome. Examples: sea stars, fish, toads, snakes, birds, and humans.

Development of Animals Cells in developing embryos continue to differentiate and become specialized to perform different functions.

Development of Animals Some embryos develop into miniature forms of adults called juveniles.

Development of Animals Some embryos develop inside an egg into an intermediate stage called a larva which has little resemblance to the adult. Inside the egg, the larva is surrounded by a membrane formed right after fertilization.

Development of Animals After the juvenile or larval stage the animal passes into the adult stage and cycle begins again. Development of Animals

http://www.bozemanscience.com/sc ience-videos/2012/5/6/animals.html

Symmetry A term used to describe the arrangement of body structures: Asymmetry Radial Symmetry Bilateral Symmetry

Asymmetry An animal that is irregular in shape. Asymmetrical animals are often sessile. Example: Sponges

Radial Symmetry Animals that can be divided along any plane through a central axis into roughly equal halves. Radial symmetry enables an animal to detect and capture prey coming toward it from any direction. Example: Hydra

Bilateral Symmetry Animal can be divided down its length into similar right and left halves.

Bilateral Symmetry Bilateral animals have four sides: Anterior or head end (often with sensory organs) Posterior or tail end Dorsal or upper surface Ventral or lower surface

Bilateral Symmetry All animals with bilateral symmetry developed from three embryonic cell layers – ectoderm, endoderm, and mesoderm.

Bilateral Symmetry Some animals with bilateral symmetry also have fluid-filled spaces inside their bodies in which internal organs are found called body cavities. These cavities allow the animal to grow large because they provide efficient circulation and transportation of fluids and support for organs and organ systems.

Bilateral Symmetry Animals with bilateral symmetry can be divided into: Acoelomates Psuedocoelomates Coelomates

Bilateral Symmetry Acoelomates: Have no body cavities Have digestive tracts that extend throughout the body. May have been the first group of animals in which organs evolved. The organs are embedded in the solid tissues of the body. Example: Flatworm

Bilateral Symmetry Psuedocoelomates: Have a fluid-filled body cavity partly lined with mesoderm that develops between the endoderm and mesoderm Have a one-way digestive tract that has regions with specific functions. Can move quickly because muscles attach to the mesoderm and brace against the rigid, fluid-filled psuedocoelom. Examples: Roundworm

Bilateral Symmetry Coelomates: Have a fluid-filled body cavity completely surrounded by mesoderm Have the greatest diversity of all animals. Specialized organs and organ systems develop in the coelom. The digestive tract and other internal organs are attached by double layers of mesoderm and are suspended within the coelom, which cushions and protects them.

Animal Protection and Support Exoskeleton Hard covering on the outside of the body that: Provides a framework for support Protects soft body tissues Prevents water loss Provides protection from predators

Animal Protection and Support Exoskeleton: The exoskeleton is secreted by the epidermis and extends into the body where it provides a place for muscle attachment. As an animal grows it secretes a new exoskeleton and sheds the old one. Usually found in invertebrates which are animals that do not have a backbone. Examples: Crabs, spiders, dragonflies, beetles

Animal Protection and Support Endoskeleton: Covered by layers of cells Provides support for the body Protects internal organs Provides an internal brace for muscles to pull against May be made of calcium carbonate, cartilage, or bone.

Animal Protection and Support Endoskeleton: May be found in invertebrates such as sea stars and sea urchins or in vertebrates, which are animals with both an endoskeleton and a backbone, such as fish, amphibians, reptiles, birds, and mammals.

Origin of Animals Probably evolved from aquatic, colonial protists in the late Precambrian. All the major body plans that exist today were thought to already be in existence by the beginning of the Cambrian Period 543 million years ago.