Chapter 1: The Foundations: Logic and Proofs 1.1 Propositional Logic 1.2 Propositional Equivalences 1.3 Predicates and Quantifiers 1.4 Nested Quantifiers.

Slides:



Advertisements
Similar presentations
Discrete Mathematics University of Jazeera College of Information Technology & Design Khulood Ghazal Mathematical Reasoning Methods of Proof.
Advertisements

Introduction to Proofs
PROOF BY CONTRADICTION
Announcements Grading policy No Quiz next week Midterm next week (Th. May 13). The correct answer to the quiz.
Rules of Inferences Section 1.5. Definitions Argument: is a sequence of propositions (premises) that end with a proposition called conclusion. Valid Argument:
1 Section 1.5 Rules of Inference. 2 Definitions Theorem: a statement that can be shown to be true Proof: demonstration of truth of theorem –consists of.
Deduction In addition to being able to represent facts, or real- world statements, as formulas, we want to be able to manipulate facts, e.g., derive new.
CS128 – Discrete Mathematics for Computer Science
Logic 3 Tautological Implications and Tautological Equivalences
Logic and Proof. Argument An argument is a sequence of statements. All statements but the first one are called assumptions or hypothesis. The final statement.
Syllabus Every Week: 2 Hourly Exams +Final - as noted on Syllabus
CSE115/ENGR160 Discrete Mathematics 01/31/12 Ming-Hsuan Yang UC Merced 1.
CSE115/ENGR160 Discrete Mathematics 02/01/11
Proof by Deduction. Deductions and Formal Proofs A deduction is a sequence of logic statements, each of which is known or assumed to be true A formal.
Introduction to Proofs ch. 1.6, pg. 87,93 Muhammad Arief download dari
Fall 2002CMSC Discrete Structures1 Let’s proceed to… Mathematical Reasoning.
Mathematical Induction
Methods of Proof & Proof Strategies
Chapter 1: The Foundations: Logic and Proofs
CSCI 115 Chapter 2 Logic. CSCI 115 §2.1 Propositions and Logical Operations.
A Brief Summary for Exam 1 Subject Topics Propositional Logic (sections 1.1, 1.2) –Propositions Statement, Truth value, Proposition, Propositional symbol,
Introduction to Proofs
1 Georgia Tech, IIC, GVU, 2006 MAGIC Lab Rossignac Lecture 03: PROOFS Section 1.5 Jarek Rossignac CS1050: Understanding.
MATH 224 – Discrete Mathematics
March 3, 2015Applied Discrete Mathematics Week 5: Mathematical Reasoning 1Arguments Just like a rule of inference, an argument consists of one or more.
Proofs1 Elementary Discrete Mathematics Jim Skon.
CSci 2011 Discrete Mathematics Lecture 6
10/17/2015 Prepared by Dr.Saad Alabbad1 CS100 : Discrete Structures Proof Techniques(1) Dr.Saad Alabbad Department of Computer Science
1 Sections 1.5 & 3.1 Methods of Proof / Proof Strategy.
1 Math/CSE 1019C: Discrete Mathematics for Computer Science Fall 2011 Suprakash Datta Office: CSEB 3043 Phone: ext
Proofs1 Advanced Discrete Mathematics Jim Skon. Proofs2  Definition: A theorem is a valid logical assertion which can be proved using other theorems.
Discrete Structures (DS)
1 CMSC 250 Discrete Structures CMSC 250 Lecture 1.
Fundamentals of Logic 1. What is a valid argument or proof? 2. Study system of logic 3. In proving theorems or solving problems, creativity and insight.
1 Introduction to Abstract Mathematics Chapter 2: The Logic of Quantified Statements. Predicate Calculus Instructor: Hayk Melikya 2.3.
Fall 2008/2009 I. Arwa Linjawi & I. Asma’a Ashenkity 11 The Foundations: Logic and Proofs Introduction to Proofs.
1 Discrete Structures – CNS2300 Text Discrete Mathematics and Its Applications Kenneth H. Rosen (5 th Edition) Chapter 3 The Foundations: Logic and Proof,
What is Reasoning  Logical reasoning is the process of drawing conclusions from premises using rules of inference.  These inference rules are results.
Chapter 2 Fundamentals of Logic 1. What is a valid argument or proof?
CSci 2011 Discrete Mathematics Lecture 4 CSci 2011.
CS104:Discrete Structures Chapter 2: Proof Techniques.
Section 1.7. Definitions A theorem is a statement that can be shown to be true using: definitions other theorems axioms (statements which are given as.
Foundations of Discrete Mathematics Chapter 1 By Dr. Dalia M. Gil, Ph.D.
Proof Techniques Chuck Cusack
Discrete Mathematical Structures: Theory and Applications 1 Logic: Learning Objectives  Learn about statements (propositions)  Learn how to use logical.
CSci 2011 Discrete Mathematics Lecture 5 CSci 2011.
Chapter 1, Part III: Proofs With Question/Answer Animations Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without.
Section 1.7. Section Summary Mathematical Proofs Forms of Theorems Direct Proofs Indirect Proofs Proof of the Contrapositive Proof by Contradiction.
Chapter 1 Logic and proofs
March 23 rd. Four Additional Rules of Inference  Constructive Dilemma (CD): (p  q) (r  s) p v r q v s.
The Foundations: Logic and Proofs
Discrete Mathematics Logic.
Methods of proof Section 1.6 & 1.7 Wednesday, June 20, 2018
Chapter 1: The Foundations: Logic and Proofs
Proof Techniques.
Explorations in Artificial Intelligence
Module #10: Proof Strategies
7.1 Rules of Implication I Natural Deduction is a method for deriving the conclusion of valid arguments expressed in the symbolism of propositional logic.
The Foundations: Logic and Proofs
Mathematical Reasoning
Methods of Proof. Methods of Proof Definitions A theorem is a valid logical assertion which can be proved using Axioms: statements which are given.
CS 220: Discrete Structures and their Applications
Inference Rules: Tautologies
Discrete Mathematics Logic.
Module #10: Proof Strategies
September 9, 2004 Prof. Marie desJardins (for Prof. Matt Gaston)
Foundations of Discrete Mathematics
Logic Logic is a discipline that studies the principles and methods used to construct valid arguments. An argument is a related sequence of statements.
Mathematical Reasoning
Introduction to Proofs
Presentation transcript:

Chapter 1: The Foundations: Logic and Proofs 1.1 Propositional Logic 1.2 Propositional Equivalences 1.3 Predicates and Quantifiers 1.4 Nested Quantifiers 1.5 Rules of Inference 1.6 Introduction to Proofs 1.7 Proof Methods and Strategy

To prove an argument is valid or the conclusion follows logically from the hypotheses: – Assume the hypotheses are true – Use the rules of inference and logical equivalences to determine that the conclusion is true. P. 1 Formal Proofs

Example: Consider the following logical argument: If horses fly or cows eat artichokes, then the mosquito is the national bird. If the mosquito is the national bird then peanut butter tastes good on hot dogs. But peanut butter tastes terrible on hot dogs. Therefore, cows don't eat artichokes. 1. Assign propositional variables to the component propositions in the argument: F Horses fly A Cows eat artichokes M The mosquito is the national bird P Peanut butter tastes good on hot dogs P. 1 Formal Proofs

2. Represent the formal argument using the variables 1.(F ν A) → M 2.M →P 3. ¬ P  ¬ A P. 1 Formal Proofs

3. Use the hypotheses 1., 2., and 3. and the above rules of inference and any logical equivalences to construct the proof. Assertion Reasons 1.(F ν A) → M Hypothesis 1. 2.M → P Hypothesis 2. 3.(F ν A) → P` steps 1 and 2 and hypothetical syll. 4. ¬ P Hypothesis ¬(F ν A) steps 3 and 4 and modus tollens 6. ¬F Λ¬A step 5 and DeMorgan 7. ¬A Λ¬F step 6 and commutativity of 'and' 8. ¬A step 7 and simplification Q. E. D. P. 1 Formal Proofs

We wish to establish the truth of the 'theorem‘ P→Q. P may be a conjunction of other hypotheses. P → Q is a conjecture until a proof is produced. P. 1 Methods of Proof

Trivial Proof Vacuous Proof Direct Proof Indirect Proof Proof by Contradiction Proof by Cases P. 1 Methods of Proof

Trivial proof – If we know Q is true then P → Q is true. Example: – If it's raining today then the void set is a subset of every set. – The assertion is trivially true independent of the truth of P. P. 1 Methods of Proof: Trivial Proof

Vacuous proof – If we know one of the hypotheses in P is false then P → Q is vacuously true. Example: – If I am both rich and poor then hurricane Fran was a mild breeze. This is of the form (P Λ ¬ P) → Q – and the hypotheses form a contradiction. – Hence Q follows from the hypotheses vacuously. P. 1 歐亞書局 Methods of Proof: Vacuous Proof

Direct proof – assumes the hypotheses are true – uses the rules of inference, axioms and any logical equivalences to establish the truth of the conclusion. Example: – Theorem: If 6x + 9y = 101, then x or y is not an integer. – Proof: Assume 6x + 9y = 101 is true. Then from the rules of algebra 3(2x + 3y) = 101. But 101/3 is not an integer so it must be the case that one of 2x or 3y is not an integer (maybe both). Therefore, one of x or y must not be an integer. Q.E.D. P. 1 歐亞書局 Methods of Proof: Direct Proof

Indirect proof – A direct proof of the contrapositive: – assumes the conclusion of P → Q is false ( ¬ Q is true) – uses the rules of inference, axioms and any logical equivalences to establish the premise P is false. Note, in order to show that a conjunction of hypotheses is false is suffices to show just one of the hypotheses is false. P. 1 Methods of Proof: Indirect Proof

P. 1 Methods of Proof: Indirect Proof Example: – A perfect number is one which is the sum of all its divisors except itself. For example, 6 is perfect since = 6. So is 28. – Theorem: A perfect number is not a prime. – Proof: (Indirect). We assume the number p is a prime and show it is not perfect. But the only divisors of a prime are 1 and itself. Hence the sum of the divisors less than p is 1 which is not equal to p. Hence p cannot be perfect. Q. E. D.

Proof by contradiction – assumes the conclusion Q is false – derives a contradiction. P. 1 Methods of Proof:Proof by contradiction

Example: – Theorem: There is no largest prime number. (Note that there are no formal hypotheses here.) We assume the conclusion 'there is no largest prime number' is false. There is a largest prime number. Call it p. Hence, the set of all primes lie between 1 and p. Form the product of these primes: r = p. But r + 1 is a prime larger than p. (Why?). This contradicts the assumption that there is a largest prime. Q.E.D. P. 1 Methods of Proof:Proof by contradiction

The formal structure of the above proof is as follows: – Let P be the assertion that there is no largest prime. – Let Q be the assertion that p is the largest prime. – Assume ¬ P is true. – Then (for some p) Q is true so ¬ P→Q is true. – We then construct a prime greater than p so Q → ¬ Q. – Applying hypothetical syllogism we get ¬ P → ¬ Q. – From two applications of modus ponens we conclude that Q is true and ¬ Q is true so by conjunction ¬ QΛQ or a contradiction is true. – Hence the assumption must be false and the theorem is true. P. 1 歐亞書局 Methods of Proof:Proof by contradiction

1. Break the premise of P→Q into an equivalent disjunction of the form P 1 ν P 2 ν... ν P n. 2. Then use the tautology [(P 1 → Q) Λ (P 2 → Q) Λ... Λ(P n → Q)]↔[(P 1 ν P 2 ν... ν P n ) → Q] Each of the implications P i → Q is a case. You must a)Convince the reader that the cases are inclusive, i.e., they exhaust all possibilities b)Establish all implications P. 1 Methods of Proof: Proof by Cases

Example: – Let  be the operation 'max' on the set of integers: if a  b then a  b = max {a, b} = a = b  a. – Theorem: The operation  is associative. – For all a, b, c (a  b)  c = a  (b  c). P. 1 歐亞書局 Methods of Proof: Proof by Cases

Example:Proof: – Let a, b, c be arbitrary integers. – Then one of the following 6 cases must hold (are exhaustive): 1. a  b  c2. a  c  b 3. b  a  c4. b  c  a 5. c  a  b6. c  b  a – Case 1: a  b = a, a  c = a, and b  c = b. – Hence (a  b)  c = a = a  (b  c). – Therefore the equality holds for the first case. – The proofs of the remaining cases are similar (and are left for the student). Q. E. D. P. 1 歐亞書局 Methods of Proof: Proof by Cases

Example 15: What is wrong with the “proof” that 1=2? “Proof:” We use these steps where a and b are two equal positive integers. 1.a=b (Given) 2.a 2 =ab 3.a 2 -b 2 =ab-b 2 4.(a-b)(a+b)=b(a-b) 5.a+b=b 6.2b=b 7.2=1 HW: Example 15, p83 P. 1 Mistakes in Proofs

Conjunction Disjunction Conjecture P. 1 Terms