Penning-Trap Mass Spectrometry for Neutrino Physics

Slides:



Advertisements
Similar presentations
LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Advertisements

Structure of the ECEC candidate daughter 112 Cd P.E. Garrett University of Guelph TRIUMF Excellence Cluster “Universe”, Technische Universität München.
Towards neutrino mass determination by electron capture Yuri Novikov PNPI (St.Petersburg) PNPI (St.Petersburg) and GSI (Darmstadt) Symposium in Milos:
SUMMARY – SESSION NU-3 ABSOLUTE NEUTRINO MASS SNOWMASS 2013, MINNEAPOLIS AUG 2, 2013 Hamish Robertson, University of Washington Convenors: Ben Monreal,
High precision study of the  decay of 42 Ti  V ud matrix element and nuclear physics  Experimental and theoretical precisions  New cases: goals and.
Precision mass measurements for fundamental studies Tommi Eronen Max-Planck-Institut für Kernphysik Heidelberg, Germany.
Double beta decay nuclear matrix elements in deformed nuclei O. Moreno, R. Álvarez-Rodríguez, P. Sarriguren, E. Moya de Guerra F. Šimkovic, A. Faessler.
DBD matrix elements Welcome and aim of the workshop Experimental situation Outcome.
One-qusiparticle excitations of the heavy and superheavy nuclei A. Parkhomenko and and A.Sobiczewski Institute for Nuclear Studies, ul. Hoża 69, Warsaw.
Single particle properties of heavy and superheavy nuclei. Aleksander Parkhomenko.
A Penning trap as a precision mass balance – Q-Value determinations with ISOLTRAP and SMILETRAP Outline Workshop on NDBD, Durham, Klaus Blaum:
The Nature of Molecules
Periodic Table – Filling Order
Search for  + EC and ECEC processes in 112 Sn A.S. Barabash 1), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow, Russia 2) CNBG, Gradignan,
New limits on  + EC and ECEC processes in 74 Se and 120 Te A.S. Barabash 1), F. Hubert 2), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow,
Electron Capture branching ratio measurements at TITAN-TRIUMF T. Brunner, D. Frekers, A. Lapierre, R. Krücken, I. Tanihata, and J. Dilling for the TITAN.
Metals, Nonmetals, Metalloids. Metals and Nonmetals Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Unit 4 The Periodic Table Chemistry I Mr. Patel SWHS.
Neutrino Physics with Penning Traps at MPI-K Sergey Eliseev Group of Prof. K. Blaum “Trapped and Cooled Ions“ MPI-K, Heidelberg MPI-K, Heidelberg SFB-Meeting,
Periodic Table Of Elements
Search for two-phonon octupole excitations in 146 Gd Energy Postgraduate Conference 2013 University of Zululand/ University of the Western Cape Nontobeko.
Mass measurements using low energy ion beams -1- C. Thibault 31 mars 2004 Motivations to measure masses Present status Experimental methods for direct.
Astrophysical p-process: the synthesis of heavy, proton-rich isotopes Gy. Gyürky Institute of Nuclear Research (ATOMKI) Debrecen, Hungary Carpathian Summer.
Anisotropic dielectronic resonances from magnetic-dipole lines Yuri Ralchenko National Institute of Standards and Technology Gaithersburg, MD, USA ADAS.
Contribution of Penning trap mass spectrometry to neutrino physics Szilárd Nagy MPI-K Heidelberg, Germany New Instruments for Neutrino Relics and Mass,
Core-excited states in 101 Sn Darek Seweryniak, ANL GS/FMA collaboration.
TRIGA-TRAP High-precision mass measurements on neutron-rich nuclides and actinides November, 18 th Jens Ketelaer 1 Outline: Motivation Mass measurements.
Addendum to Proposal P-242 to the INTC SEARCH FOR NEW CANDIDATES FOR THE NEUTRINO-ORIENTED PRECISION MASS SPECTROMETRY D. Beck, K. Blaum, M. Block, Ch.
Modern Periodic Table Objective:
Neutrino-related nuclear mass difference measurements with a few 10 eV uncertainty at SHIPTRAP Enrique MINAYA RAMIREZ Max-Planck-Institut für Kernphysik,
Alkali Metals, Group 1 H N OF Cl Br I Li Na K Fr Be Mg Ca Ra Sc Ac He Ne Ar Kr Rn Ti V Cr Mn Fe Co Ni Cu ZnGa Ge As Se Rb Sr Y Xe Zr Nb Mo Tc Ru Rh Pd.
Nanuf03, Bucharest, Stefan Kopecky Traps for fission product ions at IGISOL Experimental Facilities Mass Measurements Status and Future Perspectives.
Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:
Outline Sebastian George Tokyo 2007 High-Precision Mass Spectrometry
DOUBLE BETA DECAY TO THE EXCITED STATES (EXPERIMENTAL REVIEW) A.S. BARABASH ITEP, MOSCOW.
High-precision mass measurements below 48 Ca and in the rare-earth region to investigate the proton-neutron interaction Proposal to the ISOLDE and NToF.
Precision mass measurements of n-rich nuclei between N=50 and 82. Short overview on the experimental approach Penning trap mass measurements on n-rich.
„The uncertainty in the calculated nuclear matrix elements for neutrinoless double beta decay will constitute the principle obstacle to answering some.
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
R.Burcu Cakirli*, L. Amon, G. Audi, D. Beck, K. Blaum, Ch. Böhm, Ch. Borgmann, M. Breitenfeldt, R.F. Casten, S. George, F. Herfurth, A. Herlert, M. Kowalska,
Alexander Herlert High-precision mass measurements for reliable nuclear-astrophysics calculations CERN, PH-IS NIC-IX, CERN, Geneva, June 29, 2006.
TRIGA-SPEC: Developement platform for MATS and LaSpec at FAIR Double-beta transition Q-value measurements with TRIGA-TRAP NUSTAR Meeting Christian.
FIDIPRO-JSPS Workshop, Keurusselkä , AriJokinen, JYFL Nuclear structure probed by precision atomic mass measurements in a Penning trap Ari.
Max-Planck-Institut für Kernphysik, Heidelberg Zhuang GE RIKEN, Wako, Japan Mass measurements of short-lived nuclides at storage rings in Asia and its.
1 Atomic Mass Evaluation Meng WANG (王猛) CSNSM-CNRS, France MPIK-Heidelberg, Germany IMP-CAS, China 5 th FCPPL workshop.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
Periodic Table of Elements
1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si
György Gyürky Institute of Nuclear Research (Atomki) Debrecen, Hungary
Periodensystem Biomaterials Research - Manfred Maitz H He Li Be B C N
Masses of noble gases David Lunney CERN contact: Sarah Naimi, CSNSM
Do Now: Answer the following:
Emission of Energy by Atoms and Electron Configurations
Trends of the Periodic Table
Periodic Table Kelter, Carr, Scott, Chemistry A Wolrd of Choices 1999, page 74.
WHAT THE HECK DO I NEED TO BE ABLE TO DO?
Periodic Table of the Elements
ТАБЛИЦА Б. Е. ЛИПОВА «STRUCTURE OF ATOMIC NUCLEUS”
Review: Prospects of detection of relic antineutrinos by resonant absorption in electron capturing nuclei. J D Vergados & Yu N Novikov, J. Phys. G: Nucl.
4.2 IONIZATION ENERGY 4.6 TABLE 4.2 Ionization Energy of the Elements
PERIODIC TABLE OF ELEMENTS
Electron Configurations
DETECTION LIMITS < 1 ppt ng/L 1-10 ppt ng/L ppt ng/L
Line Spectra and the Bohr Model
Electron Configurations and the Periodic Table
The origin of heavy elements in the solar system
Search for Lepton-number Violating Processes
Penning Trap Mass Spectrometry for Particle Physics
→ Atomic radius decreases → Ionization energy increases → Electronegativity increases →
Presentation transcript:

Penning-Trap Mass Spectrometry for Neutrino Physics Sergey Eliseev Max-Planck Institute for Nuclear Physics, Heidelberg, Germany International Workshop XLIII on Gross Properties of Nuclei and Nuclear Excitations Hirschegg , January 12, 2015

OUTLINE Basics of Penning-Trap Mass Spectrometry PTMS for Neutrino Physics Type of Neutrinos Determination of Neutrino Mass Search for heavy sterile Neutrinos

Basics of Penning-Trap Mass Spectrometry

Masses of Exotic Nuclides (short-lived to stable) Field Examples dm/m shell closures, shell quenching, regions of Nuclear structure physics deformation, drip lines, halos, Sn, Sp, S2n, S2p, δVpn, island of stability 10-6 to 10-7 rp-process and r-process path, waiting-point Astrophysics nuclear models mass formula nuclei, proton threshold energies, astrophysical reaction rates, neutron star, x-ray burst Weak interaction studies CVC hypothesis, CKM matrix unitarity, Ft of 10-8 superallowed ß-emitters Metrology, fundamental constants α (h/mCs, mCs /mp, mp/me ), mSi 10-9 to 10-10 0nbb, 0n2EC 10-8-10-9 Neutrino physics mmother – mdaughter : heavy neutrinos ~10-10 neutrino mass <10-11 mp and mp me- and me+ mion, electron binding energy CPT tests QED in HCI <10-11

nc = q 1 2p m B Penning trap the most accurate mass spectrometer q/m strong uniform static B-field 1 q nc = 2p m

Max-Planck Institute for Nuclear Physics, Penning trap the most accurate mass spectrometer B q/m strong uniform static B-field 1 q nc = 2p m SHIPTRAP JYFLTRAP TRIGATRAP MLLTRAP THe-TRAP Max-Planck Institute for Nuclear Physics, Heidelberg < 10-11 DB B h-1 < 5 · 10-9 DB B h-1

Penning Trap magnetic field electrostatic field B q/m

Penning Trap B modified cyclotron motion: magnetron motion: axial motion:

long-lived and stable nuclides short-lived nuclides Brown & Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

Penning-Traps worldwide JYFLTRAP SHIPTRAP MLLTRAP TITAN TRIGATRAP THe-TRAP CPT LEBIT ISOLTRAP FSU on-line facility for short-lived nuclides dm/m ~ 10-9 (ToF-ICR technique) ultra-precise Penning trap for long-lived and stable nuclides dm/m <10-10 (FT-ICR technique)

Penning-Traps worldwide JYFLTRAP SHIPTRAP MLLTRAP TITAN TRIGATRAP THe-TRAP LEBIT CPT ISOLTRAP PENTATRAP FSU CMU-TRAP

High Precision PTMS Q = Mmother- Mdaughter of b and bb transitions 10-8-10-9 < 10-10 type of neutrinos heavy sterile neutrinos < 10-11 neutrino mass

High Precision PTMS Q = Mmother- Mdaughter of b and bb transitions 10-8-10-9 < 10-10 type of neutrinos heavy sterile neutrinos < 10-11 neutrino mass

double-electron-capture nuclides double b-decay nuclides

two-neutrino mode neutrinoless mode

neutrinoless mode

• • • Observation of 0nbb or 0n2EC proves that: neutrino is a Majorana particle, n = n • conservation of total lepton number breaks Measurement of T1/2 gives: • effective Majorana neutrino mass

Neutrinoless Double-b - Decay T1/2~1019y T1/2>1025y Contribution of Penning Traps: measurements of Qbb – values with a sub-keV uncertainty transition Q-value precision 76Ge – 76Se 2039.006(50) 6E-10 G. Douysset et al., PRL 86, 4259 (2001) 100Mo – 100Ru 3034.40(17) 2E-9 S. Rahaman et al., PLB 662, 111 (2008) 130Te – 130Xe 2527.518(13) 1E-10 M. Redshaw et al., PRL 102, 212502 (2009) 136Xe – 136Ba 2457.83(37) 3E-09 M. Redshaw et al., PRL 98, 053003 (2007) 48Ca – 48Ti 4268.0 (3) 7E-10 M. Redshaw et al., PRC 86, 041306(R) (2013) A.A. Kwiatkowski et al., PRC 89, 045502 (2014) Experiments: GERDA & MAJORANA : 76Ge NEMO-3: 100Mo COBRA & CUORE: 130Te EXO: 136Xe CANDLES & CARVEL: 48Ca

expected T1/2 of 0n2EC > 1030 yr Neutrinoless Double-Electron Capture expected T1/2 of 0n2EC > 1030 yr

expected T1/2 of 0n2EC > 1030 yr Neutrinoless Double-Electron Capture expected T1/2 of 0n2EC > 1030 yr

Neutrinoless Double-Electron Capture resonant enhancement of capture rate T1/2 of 0n2EC ~ 1023 yr Search for a transition with (Q-B2h-Eg) < 1 keV Measurement of Q=M1-M2 at ~ 100 eV-Level

Measurements with SHIPTRAP/GSI Addressed 0n2EC transitions 112Sn → 112Cd JYFLTRAP, S. Rahaman et al., Phys. Rev. Lett. 103, 042501 (2009) JYFLTRAP, V. S. Kolhinen et al., Phys. Lett. B 684, 17 (2010) 74Se → 74Ge FSU, B. J. Mount et al., Phys. Rev. C 81, 032501(R) (2010) 136Ce → 136Ba JYFLTRAP, V. S. Kolhinen et al., Phys. Lett. B 697, 116 (2011) 184Os → 184W TRIGATRAP, C. Smorra et al., Phys. Rev. C 86, 044604 (2012) 152Gd → 152Sm 164Er → 164Dy Measurements with SHIPTRAP/GSI 180W → 180Hf 96Ru → 96Mo 162Er → 162Dy Phys. Rev. Lett. 106 (2011) 052504; 107 (2011) 152501; 168Yb → 168Er Phys. Rev. C 83 (2011) 038501; 84 (2011) 028501; 84 (2011) 012501; 106Cd → 106Pd Nucl. Phys. A 875 (2012) 1; 156Dy → 156Gd 124Xe → 124Te 130Ba → 130Xe

between nuclear ground states 0+ → 0+ transitions between nuclear ground states 2EC-transition Q (old), keV D (old), keV Q (new), keV D (new), keV T1/2·|m2EC|2, yr 152Gd → 152Sm 54.6(3.5) -0.2(3.5) 55.7(0.2) 0.9(0.2) 1026 164Er → 164Dy 23.3(3.9) 5.2(3.9) 25.07(0.12) 6.81(0.12) 2·1030 180W → 180Hf 144.4(4.5) 13.7(4.5) 143.1(0.2) 12.4(0.2) 3·1027 JYFLTRAP, S. Rahaman et al., Phys. Rev. Lett. 103, 042501 (2009)

multiple-resonance phenomenon in 156Dy  |M| =3 for 0+ → 0+ T1/2 (0+→0+) ~ 31024 y for |m2EC|=1 eV

Q-values of all important 0nbb – transitions JYFLTRAP SHIPTRAP MLLTRAP TITAN TRIGATRAP CPT LEBIT THe-TRAP ISOLTRAP FSU Q-values of all important 0nbb – transitions are measured with sufficient accuracy Two resonantly enhanced 0n2EC – transitions are found

High Precision PTMS Q = Mmother- Mdaughter of b and bb transitions 10-8-10-9 < 10-10 type of neutrinos heavy sterile neutrinos < 10-11 neutrino mass

Determination of Neutrino Mass with an uncertainty of ~ 0.2 eV KATRIN - Project b--decay of Tritium - Project EC in 163Ho HOLMES - Project MARE- Project b--decay of 187Re Measurements of Q-Values are required with a relative uncertainty (dQ/m) < 10-11

Max-Planck Institute for Nuclear Physics THe-TRAP & PENTATRAP Max-Planck Institute for Nuclear Physics (Heidelberg) Division “Stored and Cooled Ions” THe-TRAP PENTATRAP Measurements of mass ratios of THe-TRAP PENTATRAP Tritium \ 3He 187Re \ 187Os 163Ho \ 163Dy with an accuracy of < 10-11

THe-TRAP for KATRIN: 3H3He Q-value THe-Trap aims for dQ ≈ 20 meV dQ/m < 10-11 Status: Q = m(16O5+)-m(12C4+) dQ/m ≈ 10-10 Q=18 589.8 (1.2) eV S. Streubel et al., Appl. Phys. B 114, 137 (2014) Sz. Nagy et al., Euro. Phys. Lett. 74, 404 (2006)

PENTATRAP for ECHo, HOLMES, MARE Measurements of Q-Values of b--decay of 187Re EC in 163Ho Intensity De-Excitation Energy / keV Q=2.47 keV Q=2.55 keV with an uncertainty of ~ 1 eV

Status of PENTATRAP Production of highly charged ions (187Re50+, Xe25+, Ar8+) Transport of HCIs to Penning-trap mass spectrometer Trapping of HCIs for up to 30 min. Measurement of the axial-motion frequency

Improvement of the Experiment Performence Status of PENTATRAP Improvement of the Experiment Performence

Q-values of 187Re b-decay & 163Ho EC (NEAR) FUTURE Q-values of 187Re b-decay & 163Ho EC with ~ 1 eV uncertainty

search for the best b-transition for the neutrino mass determination EC in 163Ho; Q-value ≈ 2.55 keV b-decay of 3H; Q-value ≈ 18.6 keV b-decay of 187Re; Q-value ≈ 2.47 keV

search for the best b-transition for the neutrino mass determination Electron-Capture Transitions Intensity De-Excitation Energy / keV Q-Belectron → 0 Q-value → 0

search for the best EC-transition for the neutrino mass determination Measurement program for ISOLTRAP and JYFLTRAP

search for most suitable Penning Traps for Neutrino Mass JYFLTRAP ISOLTRAP accuracy ~ 10-8 search for most suitable EC-transitions M(187Re)-M(187Os) THe-TRAP PENTATRAP M(3H)-M(3He) M(163Ho)-M(163Dy) accuracy < 10-11

High Precision PTMS Q = Mmother- Mdaughter of b and bb transitions 10-8-10-9 < 10-10 type of neutrinos heavy sterile neutrinos < 10-11 neutrino mass

Extension of Standard Model: heavy sterile neutrinos: 1 to 100 keV overview of different approaches F. Bezrukov and M. Shaposhnikov, Phys. Rev. D 75 (2007) 053005 KATRIN and MARE (b-decay) H.J. de Vega, O. Moreno et al., Nucl. Phys. B 866 (2013) 177 search in electron capture (EC) F.X. Hartmann, Phys. Rev. C 45 (1992) 900

Extension of Standard Model: heavy sterile neutrinos: 1 to 100 keV overview of different approaches F. Bezrukov and M. Shaposhnikov, Phys. Rev. D 75 (2007) 053005 KATRIN and MARE (b-decay) H.J. de Vega, O. Moreno et al., Nucl. Phys. B 866 (2013) 177 search in electron capture (EC) F.X. Hartmann, Phys. Rev. C 45 (1992) 900

= lM1 lM1 lN1 lN1 heavy sterile neutrinos in electron capture Intensity De-Excitation Energy / keV calorimetric spectrum A(Z,N) + e A(Z-1,N)h + ne A(Z-1,N) + Ec lM1 lM1 = Function(Q-value, Ue4) lN1 lN1 3 active neutrinos exp  

Measurements of Q-values of most suitable EC-transitions P.E. Filianin et al., ArXiv:1402.4400 largest sensitivity to Ue4 around m4 ≈ Q - Bi contribution of n4 to i-capture only if m4 ≤ Q - Bi nuclide half-life Q / keV Bi / keV Bj / keV Q-Bi / keV 163Ho 4570 y 2.555(16) M1: 2.0468(5) N1: 0.4163(5) 0.51 235Np 396 d 124.2(9) K: 115.6061(16) L1: 21.7574(3) 8.6 157Tb 71 y 60.04(30) K: 50.2391(5) L1: 8.3756(5) 9.76 123Te 1017 y 52.7(16) K: 30.4912(3) L1: 4.9392(3) 22.2 202Pb 52 ky 46(14) L1: 15.3467(4) M1: 3.7041(4) 30.7 205Pb 13 My 50.6(5) 35.3 179Ta 1.82 y 105.6(4) K: 65.3508(6) L1: 11.2707(4) 40.2 193Pt 50 y 56.63(30) L1: 13.4185(3) M1: 3.137(17) 43.2

105 cryogenic microcalorimeters 10 decays/s in each detector Measurement time of 1 year dQ=0, wave functions are known precisely Ue4 2 m4 / (Q - Bi)

measurements of Q-values with m4 / keV Ue4 2 measurements of Q-values with uncertainties dQ/m < 10-10 are reqiured measurement programme for PENTATRAP

High Precision PTMS Q = Mmother- Mdaughter of b and bb transitions completed far future type of neutrinos heavy sterile neutrinos near future neutrino mass

Thank you for your attention !