Presentation is loading. Please wait.

Presentation is loading. Please wait.

Neutrino Physics with Penning Traps at MPI-K Sergey Eliseev Group of Prof. K. Blaum “Trapped and Cooled Ions“ MPI-K, Heidelberg MPI-K, Heidelberg SFB-Meeting,

Similar presentations


Presentation on theme: "Neutrino Physics with Penning Traps at MPI-K Sergey Eliseev Group of Prof. K. Blaum “Trapped and Cooled Ions“ MPI-K, Heidelberg MPI-K, Heidelberg SFB-Meeting,"— Presentation transcript:

1 Neutrino Physics with Penning Traps at MPI-K Sergey Eliseev Group of Prof. K. Blaum “Trapped and Cooled Ions“ MPI-K, Heidelberg MPI-K, Heidelberg SFB-Meeting, 9.07.2009

2 ring electrode end cap f-f- f+f+ fzfz - invariance theorem Principle of Penning trap mass spectrometry Sergey Eliseev, SFB-Meeting, 9.07.2009 Cyclotron frequency: B q/mq/m Confinement Volume D<10  m very precise measurements of f c are possible

3 Detection techniques Sergey Eliseev, SFB-Meeting, 9.07.2009 Narrow-band FT-ICR 4.2 K Q ~ 15 000; voltage noise ~ 700 pV/Hz 1/2 current noise ~ 3fA/Hz 1/2 High-precision mass measurements Single ion sensitivity  m/m < 10 -11

4 Penning Traps: with an accuracy up to 10 -11 Determination of neutrino & anti-neutrino mass Q-value of a decay (Q=M i -M k ) …………………… Type of neutrino: Majorana or Dirac Determination of mixing angle  13 Sergey Eliseev, SFB-Meeting, 9.07.2009

5 Mass of neutrino & anti-neutrino 3H3H 35 S 3H3H 3H3H 37 Ar & 22 Na 3H3H 3H3H 163 Ho 193 Pt 163 Ho 3H3H 187 Re 163 Ho Sergey Eliseev, SFB-Meeting, 9.07.2009

6 Mass of anti-neutrino: 3 T 3 He -decay SMILETRAP (  Q=1.2 eV) VanDyck 2 2 KATRIN aims for m < 0.2 eV Independent measurement of Q-value of 3 T-decay: gives a check on systematic errors gives a check on systematic errors can remove a free parameter from KATRIN data analysis can remove a free parameter from KATRIN data analysis Sergey Eliseev, SFB-Meeting, 9.07.2009

7 … in new lab Nr.1 (THe) at MPI-K We aim for  Q ( 3 T → 3 He ) =20 meV (  m/m)= 7·10 -12 Dr. David Pinegar et al. Vibration ‘free‘ floor;  x < 0.1  m ±0.1 K Laboratory Laboratory Temperature stabilization: 0.1K/day Pressure stabilization Vibration ‘free‘ floor: <0.1  m Screening from E-fields: Al-walls Active compensation of B-fields: Helmholtz coils Magnet 6 Tesla 4.2 K-bore magnet Magnetic field stability:  B/B < 17 ppt/h 04.06.2009 12 C 4+ Sergey Eliseev, SFB-Meeting, 9.07.2009

8 A Broad-Band FT-ICR Penning Trap System for KATRIN M. Ubieto-Díaz et al. Formation of ion clusters ( 3 T 2n+1 ) +, which decay with Formation of ion clusters ( 3 T 2n+1 ) +, which decay with different end point than 3 T 2 different end point than 3 T 2 Presence of other species (contaminants) Presence of other species (contaminants) Resolving Power: ~10 4 Performance: Sensetivity: <1000 ions Sergey Eliseev, SFB-Meeting, 9.07.2009

9 Mass of Neutrino Sergey Eliseev, SFB-Meeting, 9.07.2009 Atomic Orbital Electron Capture (Z,A) + e (Z-1,A) h + Q (Z-1,A) h + Q (Z-1,A) g + B i (Z-1,A) g (Z-1,A) h (Z,A) Q EC BiBi Q neutrino is monoenergetic !!! Q can be as small as ~ 0.5 keV Q = E + m c 2 = Q EC – B i (Q EC – B i ) (Q EC – B i ) should be as small as possible smaller Q → higher contribution of m Q EC Q EC should be as small as possible

10 Mass of Neutrino Do we need to measure the neutrino mass since the antineutrino mass limit is known? Sergey Eliseev, SFB-Meeting, 9.07.2009 Yes ! to confirm the results taken from tritium measurements (with completely different systematic uncertainties) hopefully can be useful for a check of CPT-conservation for neutrinos

11 Mass of Neutrino: electron-capture in 163 Ho analysis of calorimetric spectrum m 163 Ho 163 Dy h + e (E ) 163 Dy + E c Sergey Eliseev, SFB-Meeting, 9.07.2009

12 Mass of Neutrino: electron-capture in 163 Ho Q EC m Typical  -calorimetric de-excitation spectrum of EC in 163 Ho Sergey Eliseev, SFB-Meeting, 9.07.2009 end point with accuracy ~ 1 eV Q EC - value with accuracy ~ 1 eV Cryogenic  -calorimeters ( Group of Prof. Enss, KIP, Uni Heidelberg ) PENTATRAP ( Group of Prof.K. Blaum, MPI-K, HD ) m ~ 1 eV

13 We aim for  Q ( 163 Ho → 163 Dy ) ≈1 eV; (  m/m) < 10 -11 … in new lab Nr.2 (PENTATRAP) at MPI-K Nuclide Relative uncertainty Reference 4 He1.6*10 -11 R.S. Van Dyck et al., Phys. Rev. Lett. 92 (2004) 220802. 13 C 2 H 2 – 14 N 2 7*10 -12 S. Rainville et al., Science 303 (2004) 334. 32 S5.0*10 -11 W. Shi et al., Phys. Rev. A 72 (2005) 022510. 16 O1.1*10 -11 R.S. Van Dyck et al., Int. J. Mass Spectrom. 251 (2006) 231. 28 Si2.2*10 -11 M. Redshaw et al., Phys. Rev. Lett. 100 (2008) 093002. 129,132 Xe~10 -10 M. Redshaw et al., Phys. Rev. A 79 (2009) 012506. Existing Penning TrapsPENTATRAP stable nuclides light masses closed systems radiactive, highly charged nuclides masses up to Uranium open system Improvement of accuracy by more than one order of magnitude !!! Sergey Eliseev, SFB-Meeting, 9.07.2009

14 Accelerator Hall of MPI-K (Heidelberg) PENTATRAP Lab (basement) Temperature stabilization: 0.1K/day Pressure stabilization Damping of vibrations: <1  m (active & passive) Screening from E-fields: Al-walls Active compensation of B-fields: Helmholtz coils EBITEBIT highly charged ions ~3.4 meters 3 He, 4 He ion source EBIT ion source … in new lab Nr.2 (PENTATRAP) at MPI-K Sergey Eliseev, SFB-Meeting, 9.07.2009

15 … in new lab Nr.2 (PENTATRAP) at MPI-K Accuracy of mass measurements < 10 -11 MagnetMagnet Insert Insert Tower of five traps Sergey Eliseev, SFB-Meeting, 9.07.2009

16 … in new lab Nr.2 (PENTATRAP) at MPI-K Accuracy of mass measurements < 10 -11 Monitor trap Preparation trap Precision trap 112.2mm Preparation trap Monitor trap monitoring of B-Field flactuations over the measurement cycle storage/cooling of reference ion / ion of interest substantial reduction of cycle time reduction of systematics due to temporal B-field flactuations high precision mass measurements accuracy ~10 -11 ; eV-level Sergey Eliseev, SFB-Meeting, 9.07.2009

17 Mass of Neutrino: search for new candidates Proposal IS473 to the ISOLDE Committee, CERN (2008) “SEARCH FOR NEW CANDIDATES FOR THE NEUTRINO-ORIENTED MASS DETERMINATION BY ELECTRON-CAPTURE“ Yu. Novikov, K. Blaum, S. Eliseev et Al. Q ε =(69±14) keV T 1/2 =444 y E =(-12±14) keV 194 Hg 0+0+ 194 Au 80.725 K 1-1- Q ε =(50±15) keV T 1/2 =50 ky E ≈(-35±15) keV 202 Pb 0+0+ 202 Tl 15.35 L 1 2-2- Sergey Eliseev, SFB-Meeting, 9.07.2009

18 Penning Traps: with an accuracy up to 10 -11 Q-value of a decay Type of neutrino: Majorana or Dirac Determination of neutrino & anti-neutrino mass …………………… Determination of mixing angle  13 Sergey Eliseev, SFB-Meeting, 9.07.2009

19 Type of Neutrino: Majorana or Dirac neutrinoless double beta decay neutrinoless double EC decay Sergey Eliseev, SFB-Meeting, 9.07.2009

20 Resonant  -less double EC decay (Z,A) (Z-1,A) (Z-2,A) Г εε Q εε B i (2) B j (1) Sergey Eliseev, SFB-Meeting, 9.07.2009

21 εε- transitionQ εε (keV)E=Eγ+B 1 +B 2 (keV)Δ=Q εε -E (keV)First prediction 74 Se+ 74 Ge1209.7(6)1207.14(1)(γ+L 1 +L 2 )2.6±0.6D. Frekers (2005) 112 Sn+ 112 Сd1919(4)1925.6(2)(γ+K+K)-6.6±4.0 J. Bernabeu et al., (1983) 152 Gd+ 152 Sm54.6(12) 56.26(K+L 1 ) 54.28(L 1 +K) -1.6±1.2 -0.32±1.20 Z. Sujkowski and S. Wycech (2004) 164 Er+ 164 Dy23.7(21)19.01(L 1 +L 1 )4.7±2.1“—————” Candidates for resonant neutrinoless double-capture Starting Project for PENTATRAP !!! Sergey Eliseev, SFB-Meeting, 9.07.2009

22 Penning Traps: with an accuracy up to 10 -11 Q-value of a decay Determination of neutrino & anti-neutrino mass …………………… Type of neutrino: Majorana or Dirac Determination of mixing angle  13 Sergey Eliseev, SFB-Meeting, 9.07.2009

23 Neutrino oscillation length L 32 & mixing angle  13 Probability of electron-neutrino e disappearance Sergey Eliseev, SFB-Meeting, 9.07.2009 L 32 10 meters Liquid Argon EC-Nuclide source of monoenergetic e Proposal NeOs Y.N. Novikov, A. Vasiljev, Y. Giomataris, S. Eliseev & J.D. Vergados

24 Neutrino oscillation length L 32 & mixing angle  13 Nuclide Produced amount (g) T 1/2 E υ =Q ε -B i (keV)L 32 (m) Neutrino Flux (s -1 ) 157 Tb0.00370 y9.8(3); ≥52 …102*10 9 163 Ho0.0044500 y ≈0.5; ≈0.8; ≈2.2; 2.3; 2.6 0.5-2.610 9 178 W?21.6 d23.9(20); ≥80.3 …24? 179 Ta0.0004665 d40.3; 94.340; 9410 193 Pt10050 y43.8(3); 53.8(3)…44; 542*10 14 194 Hg?440 y14(3); 25(3) …14(3); 25(3)? 202 Pb?5·10 4 y35(15); 46(15) ? 205 Pb20010 7 y35(1) 10 9 Sergey Eliseev, SFB-Meeting, 9.07.2009 Possible candidates for the neutrino source

25 Neutrino oscillation length L 32 & mixing angle  13 10 meters Liquid Argon nat Pt Neutrino source: 100 kg of nat Pt contains 0.1 kg of 193 Pt after 1 year of irradiation at a reactor Count rate: e – flux from 0.1 kg of 193 Pt: ~ 2·10 14 1/s number of  e – e interactions: ~ 100 events/year Detection of 10 keV recoil electrons Challenge 1 meter LAr Ar-gas V e e e Micromegas Porous shell Sergey Eliseev, SFB-Meeting, 9.07.2009

26 Summary Penning traps can have a significant contribution to the neutrino physics At MPI-K two Penning trap mass spectrometers are set up At MPI-K two Penning trap mass spectrometers are set up to assist the KATRIN – experiment (determination of m - ) to assist the KATRIN – experiment (determination of m - ) We are reviving the neutrino physics in the EC – sector by We are reviving the neutrino physics in the EC – sector by  contributing to determination of neutrino mass (PENTATRAP; 163 Ho) (PENTATRAP; 163 Ho)  determination of mixing angle  32 (PENTATRAP;NeOs; 193 Pt) (PENTATRAP; NeOs; 193 Pt)  contributing to neutrinoless double EC decay (type of the neutrino) (type of the neutrino)


Download ppt "Neutrino Physics with Penning Traps at MPI-K Sergey Eliseev Group of Prof. K. Blaum “Trapped and Cooled Ions“ MPI-K, Heidelberg MPI-K, Heidelberg SFB-Meeting,"

Similar presentations


Ads by Google