Claudia Nones Physics of Massive Neutrinos - Blaubeuren, July 1 - 5, 2007 Status of Cuoricino and CUORE with some remarks on nuclear matrix elements Centre.

Slides:



Advertisements
Similar presentations
IS THE NEUTRINO A MAJORANA OR A DIRAC PARTICLE ? Ettore Fiorini, Bologna June or Lepton number conservation or violation Has neutrino a finite.
Advertisements

Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
Neutrinoless Double Beta Decay
Double Beta Decay review
Stefano Pirro, IDEA Meeting –Milano November Status of the scintillating bolometer program Scintillating Bolometers Background rejection capabilities.
Amand Faessler, Tuebingen1 Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Neutrino Masses and the Neutrinoless Double Beta Decay: Dirac.
Amand Faessler, 22. Oct Double Beta Decay and Neutrino Masses Amand Faessler Tuebingen Accuracy of the Nuclear Matrix Elements. It determines the.
March 12, 2005Benasque Neutrinos Theory Neutrinos Theory Carlos Pena Garay IAS, Princeton ~
Double Beta Decay L=2 2: (A,Z)  (A,Z+2) + 2e- + 2ne
 decay and neutrino mass 35 isotopes in nature …and Mixing Neutrino Mass.. Imperial College/RAL Nottingham Nov 17 ’04 Dave Wark.
Double beta decay nuclear matrix elements in deformed nuclei O. Moreno, R. Álvarez-Rodríguez, P. Sarriguren, E. Moya de Guerra F. Šimkovic, A. Faessler.
Experimental status of the Double Beta Decay Marisa Pedretti INFN Milano Bicocca.
GERDA: GERmanium Detector Array
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
Erice, Kai Zuber1 Status of the COBRA Experiment K. Zuber, TU Dresden.
DBD matrix elements Welcome and aim of the workshop Experimental situation Outcome.
-Nucleus Interactions Double-beta Decay and Cristina VOLPE Institut de Physique Nucléaire Orsay, France.
From CUORICINO to CUORE: To probe the inverted hierarchy region On behalf of the CUORE collaboration DUSL Meeting, Washington DC November 2,-4, 2007 Frank.
Daniel Lenz, University of Wisconsin, Madison 11/05/ APS DNP Cryogenic search for neutrinoless double beta decay Daniel Lenz on behalf of the CUORE.
XXIV WWND South Padre, TX, April 08 W. Bauer Slide 1 Double  Decays, DUSEL, and the Standard Model Wolfgang Bauer Michigan State University.
Search for  + EC and ECEC processes in 112 Sn A.S. Barabash 1), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow, Russia 2) CNBG, Gradignan,
Aldo IanniNNN05 April 8, Status and future prospects of Gran Sasso Aldo Ianni INFN Gran Sasso Laboratory NNN05 Aussois, April 7-9.
LNGS Capelli Silvia on behalf of CUORE Collaboration
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
LUCIFER a potentially background-free approach to the search for 0  Claudia Nones CSNSM/CNRS-Orsay NOW2010 – September 4 th - 11 th, 2010 – Conca Specchiulla,
From Cuoricino to CUORE: towards the inverted hierarchy region Andrea Giuliani On behalf of the CUORE collaboration University of Insubria (Como) and INFN.
Double beta decay search with TeO 2 bolometers Andrea Giuliani on behalf of the CUORE collaboration University of Insubria (Como) and INFN Milano-Bicocca.
Andrea Giuliani University of Insubria (Como) and INFN Milano-Bicocca Italy Searches for Neutrinoless Double Beta Decay Epiphany Conference Krakow 6 th.
THE CUORE EXPERIMENT: A SEARCH FOR NEUTRINOLESS DOUBLE BETA DECAY Marco Andrea Carrettoni on behalf of the CUORE collaboration 2 nd International Conference.
Present status of CUORE / CUORICINO Andrea Giuliani Università dell’Insubria and INFN Milano 3rd IDEA meeting, Orsay, April 14 – 15, 2005.
Status of Surface Sensitive Bolometers University of Insubria – Como, Italy INFN – Milano, Italy Prague, Chiara Salvioni.
ILIASN4 Cascina, November 3rd, 2005Dominique Lalanne.
The CUORE experiment Thomas Bloxham Lawrence Berkeley National Lab PHENO 2011 May 9th 2011.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Neutrinoless double-beta decay and the SuperNEMO project. Darren Price University of Manchester 24 November, 2004.
Min Kyu Lee ( 이민규 ) Kyoung Beom Lee ( 이경범 ) Yong-Hamb Kim ( 김용함 ) Low Temperature Detectors 2006 Workshop on the Underground Experiment at Yangyang TEXONO-KIMS.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
Compared sensitivities of next generation DBD experiments IDEA - Zaragoza meeting – 7-8 November 2005 C. Augier presented by X. Sarazin LAL – Orsay – CNRS/IN2P3.
DOUBLE BETA DECAY TO THE EXCITED STATES (EXPERIMENTAL REVIEW) A.S. BARABASH ITEP, MOSCOW.
Yong-Hamb Kim Low Temperature Detectors for Rare Event Search 2 nd Korea-China Joint Seminar on Dark Matter Search.
28 May 2008NEMO-3 Neutrino081 NEMO-3 A search for double beta decay Robert L. Flack University College London On behalf of the NEMO-3 collaboration.
May 19, 2005UAM-IFT, Madrid : Neutrino physics in underground labs Carlos Pena Garay IAS ~
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
Claudia Nones CEA/IRFU/SPP GDR Neutrino Meeting – Saclay – 4/11/15 The bolometric way towards the inverted hierarchy of the neutrino mass: CUORE-0 → CUORE.
„The uncertainty in the calculated nuclear matrix elements for neutrinoless double beta decay will constitute the principle obstacle to answering some.
Amand Faessler, Madrid, 8. June Double Beta Decay, a Test for New Physics Amand Faessler Tuebingen „The Nuclear Matrix Elements for the  are.
1 Study of 48 Ca Double Beta Decay by CANDLES T. Kishimoto Osaka Univ.
Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
Scintillating Bolometers – Rejection of background due to standard two-neutrino double beta decay D.M. Chernyak 1,2, F.A. Danevich 2, A. Giuliani 1, M.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
Neutrinoless double beta decay (0  ) CdTe Semico nductor Band gap (eV) Electron mobility (cm 2 /V/s) Hole mobility (cm 2 /V/s) Density (g/cm 3.
Amand Faesler, University of Tuebingen, Germany. Short Range Nucleon-Nucleon Correlations, the Neutrinoless Double Beta Decay and the Neutrino Mass.
0νDBD Experimental Review and 136 Xe With HP Gas at CJPL 季向 东.
Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW.
Cryogenic Particle Detectors in Rare event Searches
The COBRA Experiment: Future Prospects
The CUORE experiment Marisa Pedretti INFN Milano Bicocca.
The search for neutrinoless double beta decay with Cuoricino and Cuore
From Cuoricino to CUORE: approaching the inverted hierarchy region
Serge Nagorny – GSSI-INFN
Status of 100Mo based DBD experiment
Status and perspectives for Double Beta Decay measurements
Sr-84 0n EC/b+ decay search with SrCl2 crystal
Double beta decay and Majorana neutrinos
Fedor Danevich Institute for Nuclear Research Kyiv, Ukraine
Presentation transcript:

Claudia Nones Physics of Massive Neutrinos - Blaubeuren, July 1 - 5, 2007 Status of Cuoricino and CUORE with some remarks on nuclear matrix elements Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse - Orsay

 Brief remarks on the bolometric technique and the choice of 130 Te as source of the 0vDBD  Cuoricino experiment: the detector and the updated results  CUORE project Outline of the talk  Cuoricino vs HM ; 130 Te vs other isotopes: comparisons through different N.M.E. calculations seen by the eyes of an experimentalist  Conclusions

deposited energy heat sink thermal coupling absorber crystal temperature sensor Bolometric technique: Main advantages: - high energy resolution - wide flexibility (few constraints on absorber material) - the detector is fully sensitive (no dead layer) (also a drawback) From a very simple thermal model -> to develop high pulses the detector has to work at low temperature (10mk) Signal:∆T = E/C Brief remarks WHY 130 Te ? high natural isotopic abundance (33.87 %) high transition energy (Q= ± 1.99 keV) - this means large phase space for the decay - the Q-value is important with respect to the natural radioactive background encouraging theoretical calculations for 0vDBD lifetime

Cuoricino and CUORE Location Cuoricino experiment is installed in Underground National Laboratory of Gran Sasso L'Aquila – ITALY the mountain providing a 3500 m.w.e. shield against cosmic rays R&D final tests for CUORE (hall C) CUORE (hall A) Cuoricino (hall A)

It is a self-consistent experiment giving significant results on Double Beta Decay. The Cuoricino detector Total number of detectors: 62 total active mass  TeO 2 : 40.7 kg  130 Te : 11.3 kg  128 Te : 10.5 kg

The Cuoricino detector

Neutrinoless DBD results (1) Background sum spectrum of all the detectors in the DBD region 60 Co pile up Energy (keV) Counts 130 Te 0vBB MT = kg 130 Te  y

UPDATED RESULTS: T 1/2 0v (y) > 3  y m ee < 0.2 – 0.98 eV Bkg = 0.18±0.02 c/keV/kg/y Neutrinoless DBD results (2) Are we now able to scrutinize the HM claim of evidence? … we will see in the last part of the talk!!! MT = kg 130 Te  y FWHM measured on sum bkg 2.6 MeV ~ 7 keV

Cryogenic Underground Observatory for Rare Events CUORE

CUORE status Funded by the US For the moment, we are not late with respect to the master plan Data taking foreseen in 2011

“PER ME SI VA NE LA CITTA’ DOLENTE, PER ME SI VA NE L’ETERNO DOLORE, PER ME SI VA TRA LA PERDUTA GENTE. GIUSTIZIA MOSSE IL MIO ALTO FATTORE: FECEMI LA DIVINA POTESTATE, LA SOMMA SAPIENZA E ‘L PRIMO AMORE. DINANZI A ME NON FUR COSE CREATE SE NON ETERNE, E IO ETERNA DURO. LASCIATE OGNI SPERANZA, VOI CH’ENTRATE.” (Inferno, Canto III, vv. 1-9) « THROUGH ME THE WAY TO THE CITY OF WOE, THROUGH ME THE WAY INTO ETERNAL PAIN, THROUGH ME THE WAY AMONG THE LOST. JUSTICE MOVED MY MAKER ON HIGH. DIVINE POWER MADE ME, WISDOM SUPREME, AND PRIMAL LOVE. BEFORE ME NOTHING WAS BUT THINGS ETERNAL,AND I ENDURE ETERNALLY. ABANDON ALL HOPE, YOU WHO ENTER HERE. » The world of the Nuclear Matrix Elements through the eyes of an experimentalist Thanks to A. Poves, V. Rodin and J. Suhonen for their help…in this hell!!!

QRPA or not QRPA?…this is the question!!! QRPA Shell Model J. Suhonen – O. Civitarese and the Jyväskylä group A. Faessler and the Tuebingen group Prof. Faessler’s advice: « Do not take democratic averaged matrix elements » … but so what can we do with our value of T 0v 1/2 ?  to evaluate m v  to scrutinize the HM result  to compare next generation experiments E. Caurier, F. Nowacki, A. Poves, et al.

Cuoricino prospects Are we able now to scrutinize the HM claim of evidence? T 1/2 0v (y) = ( )  (3σ range) m ee = 0.24 – 0.58 eV (3σ range) HM experimental results: REF. Klapdor et al., Physics Letters B 586 (2004) Best value: 1.19x10 25 y What I have done… T 1/2 0v (Klapdor) T 1/2 0v ( 130 Te) Choose a nuclear model Nuclear matrix element of Muto-Bender-Klapdor References  Tuebingen’s group: erratum of nucl-th/  Suhonen’s group: nucl-th/  Shell Model: Poves’ 4th ILIAS Annual Meeting - Chambery

T 1/2 x y for 130 Te Nuclear models Jyväskylä group Shell model group Tuebingen group N.B.: No univoque definition of G 0v and M 0v !!! Cuoricino limit vs Klapdor’s claim of evidence 3x10 24 y 6x10 24 y Final sensitivity

The main goal of CUORE is to test the inverted hierarchy And what about CUORE? (1)

a: isotopic abundance A: atomic mass ε: efficiency M: active mass [kg] T: live time [y] b: background [c/keV/kg/y] Γ: energy resolution [keV] CUORE_conservative b=0.01 – Γ=5 – T=5y CUORE_aggressive b=0.001 – Γ=5 – T=5y F 0v = 2.1 x y (1σ) F 0v = 6.6 x y (1σ) And what about CUORE? (2)

CUORE and the inverted hierarchy T 1/2 x y for 130 Te Nuclear models CUORE_conservative CUORE_aggressive Tuebingen group Shell Model group Jyväskylä group

Summarizing Tuebingen group Shell Model group Jyväskylä group Cuoricino CUORE_conservative CUORE_aggressive T 1/2 x y for 130 Te

IsotopeQ_value (keV) Isotopic abundance (%) 48 Ca Ge Se Mo Cd Te Xe What about 130 Te compared with other isotopes? a)I fix the range of the mass -> inverted hierarchy (19-50 meV) b)I use the 3 main “schools of thoughts” in terms of N.M.E. c)I compare the capability to explore the inverted hierarchy region References  Tuebingen’s group: erratum of nucl-th/  Suhonen’s group: nucl-th/  Shell Model: Poves’ 4th ILIAS Annual Meeting - Chambery

RQRPA (erratum) – Tuebingen group T 1/2 x y 150 Nd 130 Te 116 Cd 76 Ge 136 Xe 82 Se 100 Mo G 0v calculates with g A =1.25 and r 0 =1.1fm

QRPA – Suhonen’s group G 0v calculates with g A =1.25 and r 0 =1.2fm T 1/2 x y 130 Te 116 Cd 76 Ge 136 Xe 100 Mo 82 Se

Shell Model group G 0v calculates with g A =1.25 and r 0 =1.2fm T 1/2 x y 130 Te 116 Cd 76 Ge 136 Xe 82 Se

Conclusions Cuoricino is presently the most sensitive 0νDBD running experiment, capable to confirm the KK-HM “evidence”. Cuoricino demonstrates the feasibility of a large scale bolometric detector (CUORE) with good energy resolution and bkg on many detectors. CUORE, a second generation detector, will be built and start up in the next 4 years. Recent results on background suppression confirm the capability to attack the inverted hierarchy mass region.

Isotope G 0v (g A =1.25 r 0 =1.2fm) G 0v (g A =1.25 r 0 =1.1fm) 76 Ge 6.31x x Se 2.73x x Mo 4.42x x Cd 4.68x x Te 4.14x x Xe 4.37x x Nd 1.94x x There is a difference of about 25% Unit:y Suhonen + SMRodin

Isotopesuhonenshell model tubingen (QRPA gA=1) erratum_tubingen (RQRPA gA=1.25) 130Te3,492,411,362,95 116Cd3,752,941,312,42 76Ge3,332,582,483,92 136Xe4,6420,941,97 82Se3,442,492,13,49 100Mo2,971,242,78 150Nd1,964,16