GLAO Workshop, Leiden; April 26 th 2005 Ground Layer Adaptive Optics, N. Hubin Ground Layer Adaptive Optics Status and strategy at ESO Norbert Hubin European.

Slides:



Advertisements
Similar presentations
AOF Wave front sensor modules GALACSI and GRAAL by Stefan Ströbele in behalf of the GALACSI and GRAAL Team members: R.Arsenault, R.Conzelmann, B.Delabre,
Advertisements

Subaru AO in future. Outline Overview of AO systems at Mauna Kea and in the world. Ongoing plan of AOS at Subaru and Mauna Kea. What’s in future.
European Southern Observatory European Southern Observatory © ESO 2005 Page 1 AO Department Leiden, April 26th 2005 MUSE M ulti U nit S pectroscopic E.
RASC, Victoria, 1/08/06 The Future of Adaptive Optics Instrumentation David Andersen HIA.
Thomas Stalcup June 15, 2006 Laser Guidestar System Status.
Page 1 Lecture 12 Part 1: Laser Guide Stars, continued Part 2: Control Systems Intro Claire Max Astro 289, UC Santa Cruz February 14, 2013.
The Project Office Perspective Antonin Bouchez 1GMT AO Workshop, Canberra Nov
Laser guide star adaptive optics at the Keck Observatory Adam R. Contos, Peter L. Wizinowich, Scott K. Hartman, David Le Mignant, Christopher R. Neyman,
PILOT: Pathfinder for an International Large Optical Telescope -performance specifications JACARA Science Meeting PILOT Friday March 26 Anglo Australian.
Aug-Nov, 2008 IAG/USP (Keith Taylor) ‏ Instrumentation Concepts Ground-based Optical Telescopes Keith Taylor (IAG/USP) Aug-Nov, 2008 Aug-Sep, 2008 IAG-USP.
Low order wavefront sensor trade study Richard Clare NGAO meeting #4 January
LGS WFS Design Status & Issues Dekany, Delacroix, & Velur Caltech Optical Observatories.
Widening the Scope of Adaptive Optics Matthew Britton.
Keck Next Generation Adaptive Optics Team Meeting 6 1 Optical Relay and Field Rotation (WBS , ) Brian Bauman April 26, 2007.
WFS Preliminary design phase report I V. Velur, J. Bell, A. Moore, C. Neyman Design Meeting (Team meeting #10) Sept 17 th, 2007.
LGS-AO Performance Characterization Plan AOWG meeting Dec. 5, 2003 A. Bouchez, D. Le Mignant, M. van Dam for the Keck AO team.
Telescopes and Astronomical Instruments The 2 main points of telescopes are 1)To make images with as much angular information as possible 2)To gather as.
MCAO A Pot Pourri: AO vs HST, the Gemini MCAO and AO for ELTs Francois Rigaut, Gemini GSMT SWG, IfA, 12/04/2002.
Next generation wide field AO (GLAO) and NIRMOS for Subaru Telescope.
July 2001Zanjan, Iran1 Atmospheric Profilers Marc Sarazin (European Southern Observatory)
1 On-sky validation of LIFT on GeMS C. Plantet 1, S. Meimon 1, J.-M. Conan 1, B. Neichel 2, T. Fusco 1 1: ONERA, the French Aerospace Lab, Chatillon, France.
Adaptive Optics Nicholas Devaney GTC project, Instituto de Astrofisica de Canarias 1. Principles 2. Multi-conjugate 3. Performance & challenges.
MCAO Adaptive Optics Module Mechanical Design Eric James.
MCAO Adaptive Optics Module Subsystem Optical Designs R.A.Buchroeder.
Center for Astronomical Adaptive Optics Ground layer wavefront reconstruction using dynamically refocused Rayleigh laser beacons C. Baranec, M. Lloyd-Hart,
B.Delabre November 2003ANGRA DOS REIS - BRAZIL ESO 2 nd GENERATION INSTRUMENTATION – OPTICAL DESIGNS ESO VLT SECOND GENERATION INSTRUMENTATION Optical.
Adaptive Optics in the VLT and ELT era Beyond Basic AO
Laboratory prototype for the demonstration of sodium laser guide star wavefront sensing on the E-ELT Sexten Primary School July 2015 THE OUTCOME.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
GLAO simulations at ESO European Southern Observatory
Telescopes & recent observational techniques ASTR 3010 Lecture 4 Chapters 3 & 6.
1 Manal Chebbo, Alastair Basden, Richard Myers, Nazim Bharmal, Tim Morris, Thierry Fusco, Jean-Francois Sauvage Fast E2E simulation tools and calibration.
Adaptive Optics1 John O’Byrne School of Physics University of Sydney.
NSF Center for Adaptive Optics UCO Lick Observatory Laboratory for Adaptive Optics Tomographic algorithm for multiconjugate adaptive optics systems Donald.
“Twinkle, Twinkle Little Star”: An Introduction to Adaptive Optics Mt. Hamilton Visitor’s Night July 28, 2001.
AO for ELT – Paris, June 2009 MAORY Multi conjugate Adaptive Optics RelaY for the E-ELT Emiliano Diolaiti (INAF–Osservatorio Astronomico di Bologna)
The AO system for the GTC -an update Nicholas Devaney, Dolores Bello, Bruno Femenía, Alejandro Villegas, Javier Castro Grantecan, Instituto de Astrofísica.
Viewing the Universe through distorted lenses: Adaptive optics in astronomy Steven Beckwith Space Telescope Science Institute & JHU.
Tomographic reconstruction of stellar wavefronts from multiple laser guide stars C. Baranec, M. Lloyd-Hart, N. M. Milton T. Stalcup, M. Snyder, & R. Angel.
AO review meeting, Florence, November FLAO operating Modes Presented by: S. Esposito Osservatorio Astrofisico di Arcetri / INAF.
OC, June 3, SAM – SOAR Adaptive Module Andrei Tokovinin Nicole van der Bliek.
The VLT Adaptive Optics Facility
February 2013 Ground Layer Adaptive Optics (GLAO) Experiment on Mauna Kea Doug Toomey.
Future Plan of Subaru Adaptive Optics
ATLAS The LTAO module for the E-ELT Thierry Fusco ONERA / DOTA On behalf of the ATLAS consortium Advanced Tomography with Laser for AO systems.
ASTR 3010 Lecture 18 Textbook N/A
Conference “Feeding the Giants: ELTs in the era of Surveys” -- Ischia 31/08/2011 Large field of view and ELTs: an impossible marriage? Paolo Ciliegi (INAF.
Ground Layer AO at ESO’s VLT Claire Max Interim Director UC Observatories September 14, 2014.
1 MCAO at CfAO meeting M. Le Louarn CfAO - UC Santa Cruz Nov
SITE PARAMETERS RELEVANT FOR HIGH RESOLUTION IMAGING Marc Sarazin European Southern Observatory.
Gemini AO Program SPIE Opto-Southwest September 17, 2001 Ellerbroek/Rigaut [SW01-114] AO … for ELT’s 1 Adaptive Optics Requirements, Concepts, and Performance.
March 31, 2000SPIE CONFERENCE 4007, MUNICH1 Principles, Performance and Limitations of Multi-conjugate Adaptive Optics F.Rigaut 1, B.Ellerbroek 1 and R.Flicker.
GLAO Workshop Leiden April 2005 Remko Stuik Leiden Observatory.
Na Laser Guide Stars for CELT CfAO Workshop on Laser Guide Stars 99/12/07 Rich Dekany.
Page 1 Adaptive Optics in the VLT and ELT era Wavefront sensors, correctors François Wildi Observatoire de Genève.
Some Thoughts on Ground Layer Adaptive Optics & Adaptive Secondary Mirrors for Keck P. Wizinowich 9/15/14 1.
Pre-focal wave front correction and field stabilization for the E-ELT
Wide field telescope using spherical mirrors Jim Burge and Roger Angel University of Arizona Tucson, AZ Jim
Overview Science drivers AO Infrastructure at WHT GLAS technicalities Current status of development GLAS: Ground-layer Laser Adaptive optics System.
Comète axe 2 - TC1 : RSA n°2 - SPART/S t Cloud Workshop Leiden 2005 Performance of wave-front measurement concepts for GLAO M. NICOLLE 1, T. FUSCO.
Robo-AO Overview: System, capabilities, performance Christoph Baranec (PI)
On ESO LGS activities Domenico Bonaccini Calia, Yan Feng, Wolfgang Hackenberg, Ronald Holzlöhner, Luke Taylor Laser Guide Star group European Southern.
François Rigaut, Gemini Observatory GSMT SWG Meeting, LAX, 2003/03/06 François Rigaut, Gemini Observatory GSMT SWG Meeting, LAX, 2003/03/06 GSMT AO Simulations.
Introduction of RAVEN Subaru Future Instrument Workshop Shin Oya (Subaru Telescope) Mitaka Adaptive Optics Lab Subaru Telescope Astronomical.
Page 1 Adaptive Optics in the VLT and ELT era Beyond Basic AO François Wildi Observatoire de Genève.
Lecture 14 AO System Optimization
Pyramid sensors for AO and co-phasing
MASS-DIMM – a turbulence monitor for Adaptive Optics
Comparative Performance of a 30m Groundbased GSMT and a 6
NGAO Trade Study GLAO for non-NGAO instruments
Presentation transcript:

GLAO Workshop, Leiden; April 26 th 2005 Ground Layer Adaptive Optics, N. Hubin Ground Layer Adaptive Optics Status and strategy at ESO Norbert Hubin European Southern Observatory With contributions from: R. Conzelman, B. Delabre, M. Le Louarn, S. Stroebele, R. Stuik, E. Vernet

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. HubinSCOPE  Is there a Ground Layer Adaptive Optics?  FAQ about GLAO and astronomical interest  VLT GLAOs: GALACSI and GRAAL projects  Adaptive secondary: an essential element of GLAO  Laser requirements, R&D status and issues  Optimization, calibration and testing of GLAO  Minimizing telescope down time during GLAO-DSM commissioning?

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin WHAT IS GROUND LAYER AO? WFSs Reference Stars Telescope High Altitude Layer Ground Layer DM conjugated Telescope pupil Real Time Computer Averaged WF.. Ground Layer Altitude Layers Laser beams

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin Ex: 50% of the time there is 55% OR LESS turbulence in the 1 st 500m More measurements are being carried out (M. Sarazin) Does a ground layer exist? PARANAL OBSERVATORY Courtesy: M. Sarazin

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin Turbulence Profile and ground layer Mauna Kea, October 22/23, 2002: G-scidar 0km 5km 10km 15km Data: J.Vernin, A.Ziad

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin Turbulence profile investigation tools Courtesy: M. Sarazin

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin Turbulence Profile and ground layer CERRO TOLOLO OBSERVATORY Courtesy: M. Sarazin R. Wilson

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin Turbulence Profile and ground layer CERRO TOLOLO OBSERVATORY Courtesy: M. Sarazin

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin Investigation of Ground layer at Paranal  Multi Aperture Scintillation Sensor MASS + DIMM: Cn2 profile  SLODAR: Slope Detection and ranging: Higher resolution of ground layer Courtesy: R. Wilson

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin GLAO as seeing reducer? VIS TT NGS Acquisition FoV 7.5 arc-minutes 13,2 arc-minutes 15,2 arc-minutes VIS TT NGS LGS IR TT NGS Pupil Rotation Field Rotation 7.8 arc-minutes Improved seeing, Sr(K) ~ 4% 8’ FOV SeeingPSF on-axisPSF off-axis Seeing reducer Reduced exposure & Telescope time Better light concentration Reduced confusion in Stellar populations & Cluster fields

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin GLAO as seeing reducer? VLT-GRAAL K Band, gain: 100% FWHM Y Band, Gain: 30% Seeing With AO

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin GLAO improves Ensquared Energy? VLT GRAAL Y Band, gain: 50% K Band, EE doubled With AO Seeing Pixel: 0.1”

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin GLAO reduces confusion?: VLT GRAAL K Band, gain: 40% Y Band, Gain: 30% Seeing With AO Yes but more difficult!

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin GLAO and full sky coverage?  Need Laser artificial stars for WFS tomography because of: Median to bad seeing conditions assumptions Median to bad seeing conditions assumptions Science performed down to short λ Science performed down to short λ  Require Natural Guide Star for Tip-tilt correction Tip-tilt limiting magnitude (R-Band) Probability for (top to bottom) 1,2,3 TT NGS In 1arcmin annular FOV Tip-tilt limiting magnitude (R-Band) Probability for (top to bottom) 1,2,3 TT NGS In 2 arcmin annular FOV 1 VIS NGS

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin GLAO in the visible?: VLT FOV=1’ GLAO Seeing Science 1’ FOV 4’ FOV 4 Sodium LGSs Ø120” Faint vis. TT-NGS

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin GLAO: useful for most astronomical programs  Ground Layer Adaptive Optics = Seeing reducer  Reduced Seeing => reduced exposure & telescope times  Reduced seeing => Reduced confusion in Stellar populations & Cluster fields  Ground Layer Adaptive Optics = Seeing “stabilizer”  Seeing stabilizer => better percentile seeing for your site!  Seeing reducer is “easily” achievable at all λs (down to vis.)  High Sky coverage GLAO systems will benefit most astronomical programs  Seeing reducer = light concentration: Sufficient for distant (“small”) galaxies with low surface brightness ( ” pixel enough)

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin VLT GLAO Top Level Requirements  GALACSI: VLT-GLAO for a Visible 3D Spectro (MUSE): Very deep exposures (80 h) =>NGSs in Scientific FOV forbidden ! Very deep exposures (80 h) =>NGSs in Scientific FOV forbidden ! Statistically BAD seeing (1.1’’) Statistically BAD seeing (1.1’’) High sky coverage required High sky coverage required Provide factor 2 EE improvement (0.2”) over 1’ FOV in [ ] Provide factor 2 EE improvement (0.2”) over 1’ FOV in [ ] Diffraction 750 nm over ~10’’ FOV=> LTAO! Diffraction 750 nm over ~10’’ FOV=> LTAO!  GRAAL: VLT-GLAO for an NIR Imager (HAWK-I) reduce by % in Y-Ks bands the diameter collecting 50% of the encircled energy (for seeing 1”) over 8’ FOV reduce by % in Y-Ks bands the diameter collecting 50% of the encircled energy (for seeing 1”) over 8’ FOV

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin GALACSI: Baseline concept  Wavefront tomography using 4 sodium LGSs  Four 32x32 subapertures Shack Hartmann WFS  Ground layer correction: one Deformable Mirror  Sodium notch filter to block the laser Rayleigh light  Off-axis visible tip-tilt NGS for Wide Field Mode  On-axis NIR tip-tilt NGS for Narrow Field Mode

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin GALACSI Narrow Field Mode Sr(R)~10% 4 Sodium LGSs Ø30” Faint NIR TT-NGS Science 7.5”FOV GALACSI Wide Field Mode EEx2 in 0.2” Science 1’ FOV 4’ FOV 4 Sodium LGSs Ø120” Faint vis. TT-NGS From GLAO to LTAO: Laser Tomography AO LTAO essentially correct for Laser cone effect within small FOV

European Southern Observatory European Southern Observatory © ESO 2005 Page 20 AO Department LYON, January 18/19th 2005 Reimaging lens F/4.0 Field separator Nasmyth Adaptor flange 4’ Field selector Visible TT Sensor 1’ Optics free Scientific Field LGS WFS LGS WFS LGS Focus compensation 500 mm BFD 180mm defocused Laser beam 1.45 arc min Hole FIELD SEPARATOR 4 arc min GALACSI: Ground Atmospheric Layer Adaptive Corrector for Spectroscopic Imaging Exchangeable unit for NFM See S. Stroebele talk`

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin GALACSI mechanical concept See S. Stroebele talk`

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin GLAO: Practical implementations GRAAL: GRound layer AO Assisted by Laser Goal: reduce by 15 % in Y and 30% in Ks band the diameter collecting 50% of the encircled energy (for 1”) over 7.5’ FOV Goal: reduce by 15 % in Y and 30% in Ks band the diameter collecting 50% of the encircled energy (for 1”) over 7.5’ FOV  HAWK-I camera size: 4k×4k, 7.5×7.5 arcmin, arcsec/pixel  Wavefront tomography using 4 sodium LGSs  Four Shack-Hartmann WFS for LGSs  Ground layer correction: one Deformable Secondary Mirror (only solution!)  On-axis NIR tip-tilt NGS using the HAWK-I detector  As alternative, off-axis visible tip-tilt NGS  One NGS WFS for DSM commissioning & maintenance

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin GRAAL on-sky guide stars geometry VIS TT NGS Acquisition FoV 7.5 arc-minutes 13,2 arc-minutes 15,2 arc-minutes VIS TT NGS LGS IR TT NGS Pupil Rotation Field Rotation 7.8 arc-minutes

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin GRAAL Functional Block Diagram WFS Calibration IR NGS TT Sensing Off-axis Vis NGS TT Sensor VLT ADAPTERVLT ADAPTER 4 LGS Wavefront sensors with LGS focus System HAWK-I HAWK-I Calibration 7.5’ FOV Pupil LGSs VLT M1 M2 +DM Laser Launch Telescopes Position 1 Pupil

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin CCD VIS TT Sensor Four 32x32 LGS WFSs 40x40 VIS NGS WFS DSM comm lenses unit Calibration fiber GRAAL: Opto-mechanical Design Rotating Structure to follow pupil rotation

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin Lenses DSM comm 40x40 VIS NGS WFS 32x32 LGS WFS VIS TT Sensor SKY HAWK-I Calibration fiber GRAAL Opto-mechanical Design

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin DSM commissioning & maintenance mode  40x40 subapertures Shack-Hartmann WFS  6x6 pixels per subaperture, pixel scale: 0.3 arcsec/pix  1.8 arcsec FOV per sub-aperture  Focal Elongator in front of HAWK-I  Pixel scale up to 10 milli arcsec/pixel 10 milli arcsec/pixel on a 10’’ FoV on a 10’’ FoV

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin Large FOV GLAO: The essential DSM VLT-Deformable Secondary Mirror  Full replacement unit  Ø 1.1m with 1170 act.  29 mm pitch  1 ms response  Total actuator stroke: ±40-50µm P-V  Total inter-actuator stroke: 1.3 µm P-V (goal 1.5  m PV)  Stroke resolution: 5 nm VLT-DSM

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin ACTUATORS SEPARATION 28.5 < Dist. < 29.6 VLT DSM Actuator Pattern

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin Large Deformable mirror design Reference plate Heat-sink and act. support plate Electronics boxes deformable shell: 2mm! Central membrane for lateral support

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin Laser Guide Star Requirements  Photon flux: at least 1.5x10 6 Na photons/m 2 /s (goal 2.5x10 6 )  LGS pointing range up to 5.5 arcmin / VLT optical axis  Max. spot size of 1.25arcsec FWHM at 45 degrees from Zenith  Absolute LGS pointing precision in open loop: 1.1” (goal 0.5”)  Total residual jitter smaller than 50 mas rms  Output power stability: <1 % on a 10 ms time scale, <15 % on longer time scales (days)

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin ESO’s fibre laser programme For next generation LGS-AO systems and MCAO, ESO’s strategy is to develop ~1 GHz 15 W CW* ) fiber lasers at 589 nm, together with industry This strategy has created a collaboration agreement with LLNL to develop a sum-frequency fiber laser and an internal effort on fiber Raman laser/amplifier for which we ask support to the EU funding schemes * ) The design also allows a pulsed laser output format if needed Courtesy: D. Bonaccini W. Hackenberg

Ground Layer AO, N. Hubin33 ESO Fibre Raman laser demonstrator setup 1178 nm, 0.75 GHz fibre Raman seed laser Fibre Raman pre-amplifier Fibre Raman booster amplifier Diode-pumped 1121-nm Yb-doped fibre pump laser Bulk 2nd-harmonic generation in periodically-poled KTP crystal 589 nm, 1.5 GHz Courtesy: D. Bonaccini W. Hackenberg

Ground Layer AO, N. Hubin34 First 589-nm light with the frequency-doubled fibre Raman laser demonstrator in Oct ‘04 achieved 150 mW CW at 589-nm diffraction-limited output beam 1.5 GHz linewidth PPKTP, 30mm long used for SHG from 1178 to 589nm Courtesy: D. Bonaccini W. Hackenberg

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin Rayleigh scattering and “Fratricide” effect  Simulated for large field  WFS cut a small section  4 LGS  Launch behind M2  Pointing 60“ off axis  Subaperture pos. (0, -1) [m] View of one individual sub aperture

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin Optimization and calibration aspects Optimization of WFS square –DSM circular geometry Influence functions optimization Synthetic versus on-sky interaction matrix?

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin GLAO-DSM laboratory testing facility 3D Turbulence generator 2’ FOV Optical corrector ~1.7 m Spherical mirror 1.1m Adaptive secondary 4’ Field selector Visible TT Sensor LGS WFS LGS WFS Full testing of DSM and GLAO facility before installation at the VLT!! GALACSI

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. Hubin GLAO as 1 st stage for FALCON-MCAO multi-IFUs 3WFS/IFU   GLAO as a first stage for FALCON-MOAO concept Correct ground layer over a large FOV ~ concept of Woofer DM Reduce stroke requirements for the local corrector (MEMS) Optimum use of the numerous WFSs needed for multi-IFU   GLAO is a natural 1st stage for MCAO system

GLAO Workshop, Leiden; April 26 th 2005Ground Layer AO, N. HubinConclusions  GLAO is: a seeing reducer & stabilizer at all λ and essentially gives access to a better site a seeing reducer & stabilizer at all λ and essentially gives access to a better site improves Ensquared Energy, reduce confusion and reduce telescope time improves Ensquared Energy, reduce confusion and reduce telescope time if designed for full sky coverage will impact most of astronomical fields if designed for full sky coverage will impact most of astronomical fields  GRAAL for large FOV in NIR  GALACSI for 1’ FOV correction in the visible  GALACSI with Laser reconfiguration provides LTAO correction  Large DM and LGSs are essential for GLAO  Intensive calibration & testing essential for on-site robust operation  GLAO is an important 1 st stage corrector for FALCON or MCAO  GRAAL-GALACSI-DSM-LGSF4: a VLT Facility? => ESO Facility design review: end 05