High Energy neutrino cross-sections HERA-LHC working week Oct 2007 A M Cooper-Sarkar, Oxford Updated predictions of high energy ν and ν CC cross-sections.

Slides:



Advertisements
Similar presentations
Bodek-Yang Update to the Bodek-Yang Unified Model for Electron- and Neutrino- Nucleon Scattering Cross sections Update to the Bodek-Yang Unified.
Advertisements

Low-x and PDF studies at LHC Sept 2008 A M Cooper-Sarkar, Oxford At the LHC high precision (SM and BSM) cross section predictions require precision Parton.
1cteq ss 11 B. Properties of the PDFs -- Definitions First, what are the Parton Distribution Functions? (PDFs) The PDFs are a set of 11 functions, f i.
W,Z, pdf’s and the strange quark distribution Max Klein, Uta Klein, Jan Kretzschmar WZ Meeting, CERN QCD Fit assumptions and pdf’s Measurement.
Measurement of FL at HERA Have we seen anything beyond (N)NLO DGLAP? AM Cooper-Sarkar for the ZEUS and H1 Collaborations Why measure FL? How to measure.
May 2005CTEQ Summer School1 Global Analysis of QCD and Parton Distribution Functions Dan Stump Department of Physics and Astronomy Michigan State University.
Current: –Experiment: Extensive Drell-Yan p-p and p-d Expt. (E866) ; Charm production in Neutrino Scattering (CCFR, NuTeV) … etc. –Expected Advances in.
HERAPDF0.2 and predictions for W/Z production at LHC PDF4LHC A M Cooper-Sarkar 29 May 2009 Motivation Some of the debates about the best way of estimating.
QCD Studies at HERA Ian C. Brock Bonn University representing the ZEUS and H1 Collaborations.
H1/ZEUS fitters meeting Jan 15 th 2010 Am Cooper-Sarkar Mostly about fitting the combined F2c data New work on an FFN fit PLUS Comparing HERAPDF to Tevatron.
Sept 2003PHYSTAT11 … of short-distance processes using perturbative QCD (NLO) The challenge of Global Analysis is to construct a set of PDF’s with good.
CDR, JPhysG39(2012) High Precision DIS with the LHeC A M Cooper-Sarkar For the LHeC study group The LHeC- a Large Hadron-Electron Collider ~
Inclusive Jets in ep Interactions at HERA, Mónica V á zquez Acosta (UAM) HEP 2003 Europhysics Conference in Aachen, July 19, Mónica Luisa Vázquez.
Update on fits for 25/3/08 AM Cooper-Sarkar Central fit: choice of parametrization Central fit: choice of error treatment Quality of fit to data PDFs plus.
Luca Stanco - PadovaQCD at HERA, LISHEP pQCD  JETS Luca Stanco – INFN Padova LISHEP 2006 Workshop Rio de Janeiro, April 3-7, 2006 on behalf of.
Global QCD Analysis of Nucleon Structure: Progress and Prospects–CTEQ Background: –Advances in experiment and theory in global QCD analysis in recent years.
Monday, Jan. 27, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #4 Monday, Jan. 27, 2003 Dr. Jae Yu 1.Neutrino-Nucleon DIS 2.Formalism of -N DIS.
ZEUS PDF analysis 2004 A.M Cooper-Sarkar, Oxford Low-x 2004 New Analysis of ZEUS data alone using inclusive cross-sections from all of ZEUS data from HERA-I.
Update of ZEUS PDF analysis A.M Cooper-Sarkar, Oxford DIS2004 New Analysis of ZEUS data alone using inclusive cross-sections from all of HERA-I data –
Jan., 2010Aspen Winter Physics Conference XXVI M. Block 1 Analytic LO Gluon Distributions from the proton structure function F 2 (x,Q 2 ) > New PDF's.
Predictions for high energy neutrino cross-sections from ZEUS-S Global fit analysis S Chekanov et al, Phys Rev D67, (2002) The ZEUS PDFs are sets.
16/04/2004 DIS2004 WGD1 Jet cross sections in D * photoproduction at ZEUS Takanori Kohno (University of Oxford) on behalf of the ZEUS Collaboration XII.
PDF fitting to ATLAS jet data- a first look A M Cooper-Sarkar, C Doglioni, E Feng, S Glazov, V Radescu, A Sapronov, P Starovoitov, S Whitehead ATLAS jet.
FNAL Users meeting, 2002Un-ki Yang, Univ. of Chicago1 A Measurement of Differential Cross Sections in Charged-Current Neutrino Interactions on Iron and.
12 August 2003Kevin McFarland, University of Rochester NuTeV and the Strange Sea NuTeV/CCFR dimuon data is uniquely sensitive to strange sea  ± from semi-leptonic.
DIJET (and inclusive-jet) CROSS SECTIONS IN DIS AT HERA T. Schörner-Sadenius (for the ZEUS collaboration) Hamburg University DIS 06, April 2006 Tsukuba,
Precision Cross section measurements at LHC (CMS) Some remarks from the Binn workshop André Holzner IPP ETH Zürich DIS 2004 Štrbské Pleso Štrbské Pleso.
Status of Recent Parton Distribution Analyses Hung-Liang Lai Department of Science Education Taipei Municipal Teachers College Introduction Time evolution.
HERA-LHC workshop 21 st -24 th March 2005 Claire Gwenlan (with the help of Sasha Glazov, Max Klein, Gordana Lastovicka-Medin, Tomas Lastovicka)  Introduction.
NLO QCD fits How far can we get without jet data/HERA-II data? A. M. Cooper-Sarkar March-04 Collaboration Meeting ZEUSNOTE Extended ZEUS-S fits.
More on NLOQCD fits ZEUS Collab Meeting March 2003 Eigenvector PDF sets- ZEUS-S 2002 PDFS accessible on HEPDATA High x valence distributions from ZEUS-Only.
DIS Conference, Madison WI, 28 th April 2005Jeff Standage, York University Theoretical Motivations DIS Cross Sections and pQCD The Breit Frame Physics.
High Q 2 Structure Functions and Parton Distributions Ringberg Workshop 2003 : New Trends in HERA physics Benjamin Portheault LAL Orsay On behalf of the.
Further investigations on the fits to new data Jan 12 th 2009 A M Cooper-Sarkar Considering ONLY fits with Q 2 0 =1.9 or 2.0 –mostly comparing RTVFN to.
J.Feltesse1 Measurement of F L the longitudinal structure function at HERA Low x meeting, Lisbon, Portugal 28 June 2006.
Treatment of correlated systematic errors PDF4LHC August 2009 A M Cooper-Sarkar Systematic differences combining ZEUS and H1 data  In a QCD fit  In a.
Jets and α S in DIS Maxime GOUZEVITCH Laboratoire Leprince-Ringuet Ecole Polytechnique – CNRS/IN2P3, France On behalf of the collaboration On behalf of.
11 QCD analysis with determination of α S (M Z ) based on HERA inclusive and jet data: HERAPDF1.6 A M Cooper-Sarkar Low-x meeting June 3 rd 2011 What inclusive.
DIJET (and inclusive-jet) CROSS SECTIONS IN DIS AT HERA T. Schörner-Sadenius (for the ZEUS collaboration) Hamburg University DIS 06, April 2006 Tsukuba,
Isabell-A. Melzer-Pellmann DIS 2007 Charm production in diffractive DIS and PHP at ZEUS Charm production in diffractive DIS and PHP at ZEUS Isabell-Alissandra.
1 Heavy Flavour Content of the Proton Motivation Experimental Techniques charm and beauty cross sections in DIS for the H1 & ZEUS Collaborations Paul Thompson.
H1 and ZEUS Structure functions at HERA α s and PDFs Summary/Outlook Tomáš Laštovička (H1 collaboration) DESY Zeuthen, Charles University Prague at LLWI2003,
H1 QCD analysis of inclusive cross section data DIS 2004, Štrbské Pleso, Slovakia, April 2004 Benjamin Portheault LAL Orsay On behalf of the H1 Collaboration.
A. Bertolin on behalf of the H1 and ZEUS collaborations Charm (and beauty) production in DIS at HERA (Sezione di Padova) Outline: HERA, H1 and ZEUS heavy.
Wednesday, Jan. 31, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #4 Wednesday, Jan. 31, 2007 Dr. Jae Yu 1.QCD Evolution of PDF 2.Measurement.
Tensor and Flavor-singlet Axial Charges and Their Scale Dependencies Hanxin He China Institute of Atomic Energy.
CT14 PDF update J. Huston* PDF4LHC meeting April 13, 2015 *for CTEQ-TEA group: S. Dulat, J. Gao, M. Guzzi, T.-J. Hou, J. Pumplin, C. Schmidt, D. Stump,
H1 and ZEUS Combined PDF Fit DIS08 A M Cooper Sarkar on behalf of ZEUS and H1 HERA Structure Function Working Group NLO DGLAP PDF fit to the combined HERA.
D Parton Distribution Functions, Part 2. D CT10-NNLO Parton Distribution Functions.
Costas Foudas, Imperial College, Jet Production at High Transverse Energies at HERA Underline: Costas Foudas Imperial College
Outline Motivation DDIS kinematics Introduction of different diffractive data sets Global fit procedure Results and conclusion Sara Taheri Monfared (Semnan.
MSTW update James Stirling (with Alan Martin, Robert Thorne, Graeme Watt)
N. RaicevicMoriond QCD Structure Functions and Extraction of PDFs at HERA Nataša Raičeviċ University of Montenegro On behalf of the H1 and ZEUS Collaborations.
1 Proton Structure Functions and HERA QCD Fit HERA+Experiments F 2 Charged Current+xF 3 HERA QCD Fit for the H1 and ZEUS Collaborations Andrew Mehta (Liverpool.
1 A M Cooper-Sarkar University of Oxford ICHEP 2014, Valencia.
1 Proton Structure and Hard QCD AM Cooper-Sarkar, Oxford Phys Rev D93(2016)
Michigan State University
Global QCD Analysis and Collider Phenomenology — CTEQ
Charged Current Cross Sections with polarised lepton beam at ZEUS
News from HERAPDF A M Cooper-Sarkar PDF4LHC CERN March
HERA I - Preliminary H1 and ZEUS QCD Fit
Treatment of heavy quarks in ZEUS PDF fits
HESSIAN vs OFFSET method
PDF4LHC: LHC needs February 2008 A M Cooper-Sarkar, Oxford
ATLAS 2.76 TeV inclusive jet measurement and its PDF impact A M Cooper-Sarkar PDF4LHC Durham Sep 26th 2012 In 2011, 0.20 pb-1 of data were taken at √s.
Charged Current Cross Sections with polarised lepton beam at ZEUS
ZEUS High Q2 data from HERA-II +PDF fits
How to measure the charm content of the proton?
Y.Kitadono (Hiroshima ),
Measurement of b-jet Shapes at CDF
Presentation transcript:

High Energy neutrino cross-sections HERA-LHC working week Oct 2007 A M Cooper-Sarkar, Oxford Updated predictions of high energy ν and ν CC cross-sections Within conventional framework NLO DGLAP With systematic accounting for PDF uncertainties Including general mass variable flavour treatment of heavy quarks Relevant to neutrino telescopes: Ice-Cube, ANTARES, KM3NET air shower arrays: Pierre Auger array radio detectors: RICE, ANITA The point is to estimate how well known conventional predictions are in order to See when we really have unconventional behaviour at small-x BFKL ln(1/x) resummation non-linear gluon recombination etc hep-ph: arxiv

High energy neutrino interactions probe very low-x (as we shall see) and thus the most relevant experimental information comes from HERA, not from lower energy neutrino experiments In this field the cross-sections were given by Gandhi et al in 1996 This used CTEQ4-DIS PDFs and is significantly out of date, since the most extensive and accurate HERA data at low-x were published well after this date. CTEQ4 PDFs no longer represent a good fit to HERA data Fixed-tgtHERADY-WJetsTotal # Expt pts CTQ4M~’ MRS98~’ CTQ6M MRST01/ MRST This is a table of χ2 values for modern and out of date PDFs produced by Wu-Ki Tung at DIS04

Need to use updated PDFs, present work updates ZEUS-S PDFs Also modern PDFs come with uncertainty estimates from the experimental systematic and statistical errors of the input data so that one need not depend on ad hoc procedures like comparing the central value of one PDF set with another Compare uncertainty estimates on the gluon for NLO PDFs ZEUS-S uncertainty estimates are comparable those of CTEQ and MRST CTEQ6.5 ZEUS-SMRST2001

xuv(x) = Au x au (1-x) bu (1 + c u x) xdv(x) = Ad x ad (1-x) bd (1 + c d x) xS(x) = As x as (1-x) bs (1 + c s x) xg(x) = Ag x ag (1-x) bg (1 + c g x) xΔ(x) = x(d-u) = AΔ x av (1-x) bs+2 Form of the parametrization at Q 2 0 = 7 GeV 2 No χ2 advantage in more terms in the polynomial No sensitivity to shape of Δ= d – u AΔ fixed consistent with Gottfried sum-rule - shape from E866 Assume s = (d+u)/4 consistent with ν dimuon data Au, Ad, Ag are fixed by the number and momentum sum-rules ad=au for low-x valence since there is little information to distinguish → 13 parameters for the PDF fit ZEUS-S-13 fit is an updated version of the published ZEUS-S fit (Phys Rev D67, ) which was a global fit to DIS data. The updates are 1. Include all ZEUS HERA-I data 2. Free parameters Cg and au The fit uses the conservative OFFSET method to estimate the PDF uncertainty resulting from the experimental errors. Presents 68% CL uncertainties

SeaGluon The Low-x behaviour of the neutrino cross-sections is Sea dominated and the Sea is driven by the gluon by g → q qbar splitting. As we go to very high Q 2 the importance of low-x is greater Uncertainties in the PDFs increase as we go to low x- although less so at larger Q 2

Comparing ZEUS-S-13 PDFs in black with CTEQ6.5/ MRST04 in red for upbar quark for relevant x, Q2 ranges Compatibility of modern PDFs Why not just use off the shelf PDFs and do it yourself ? Firstly you’ll need the corresponding coefficient functions for NLO (and correct heavy quark treatment) Secondly, they don’t extend to large enough Q 2 or low enough x Q2=100Q2=1000Q2=10000 CTEQ6.5 MRST04

At LO in QCD for isoscalar nucleon targets we have At NLO we convolute with coefficient functions, but these expression still give us a good idea of dominant contributions Note the b will be very suppressed until Q 2 >> m top 2 ~ GeV 2, because we are consider charged current cross-sections and the b to t coupling is dominant The b contribution to F2 and FL is never more than 20%, but the effect on xF3 is much more dramatic Define the cross-section and reduced cross-section

With bWithout b These plots show F2 from an NLO calculation using a zero-mass variable flavour scheme for the heavy quarks, with and without including the b quark

These plots show FL from an NLO calculation using a zero-mass variable flavour scheme for the heavy quarks, with and without including the b quark With bWithout b

These plots show xF3 ν from an NLO calculation using a zero-mass variable flavour scheme for the heavy quarks, with and without including the b quark With bWithout b The dramatic effect of b on xF3 can be understood from looking at the LO expressions and realising that the valence quarks have a small contribution confined to high-x, whereas at low x the s and cbar parts of the sea are close to cancelling- leaving xF3 as b dominated

With bWithout b These plots show xF3 ν from an NLO calculation using a zero-mass variable flavour scheme for the heavy quarks, with and without including the b quark There is also a dramatic effect of b on xF3 for antineutrinos such that xF3 at small x is negative and bbar dominated

However, ultimately the high energy cross-sections are not very sensitive to the treatment of b Firstly because xF3 is not a large contribution compared to F2,,and it is suppressed by the y dependence such that the b contribution to the reduced cross-section is less than ~25%, even at very high Q 2 More significantly because b is suppressed until Q 2 > m top 2 ~30000, but in the full (non-reduced) cross-section the W propagator suppresses contributions for which Q 2 >> M W 2 ~6400 GeV 2 However even though the treatment of the b to t threshold is not crucial it is important to evaluate the PDFs using a general mass variable flavour number scheme at low Q2, because this treatment affects the shape of the PDFs at low Q2 and thus by evolution at high Q2, as we have recently seen in the differences between the recent CTEQ6.5 PDF predictions for LHC cross-sections as compared to the previous CTEQ6.1 predictions

Neutrino reduced cross-section vs x for different Q 2 bins evaluated with general mass variable flavour number scheme Note position of kinematic cut-off x> Q 2 /s for y<1. This ensures that very low x is not probed at high Q2, until neutrino energies are very large indeed S = S =10 10 Dominant contributions to the reduced cross- section from middling Q 2 and low-x (but perhaps not as low as we might have thought) Hence PDF uncertainties on these cross-sections are not so very large

The total neutrino cross-section is obtained by integrating At higher neutrino energies the new estimates of the cross-section differ from those of the 1996 estimate of Gandhi et al reflecting the fact that the more recent HERA data showed a somewhat less steep rise of F2 at small-x. Thus estimates of these cross-sections from calculations going beyond NLO DGLAP (BFKL, gluon screening, recombination etc) should be compared to these new updated estimates The PDF uncertainties increase slowly with neutrino energy as lower and lower x is probed

Antineutrino cross-sections are closely similar at high energies because and xF3 contributes with opposite sign in neutrino and antineutrino cross-sections However there are differences at low energies as we access high-x and the valence quark contribution become important As neutrino energy decrease the PDF uncertainties decrease since very low-x values are no longer probed. PDF uncertainties are smallest at s~10 5 corresponding to middling x, < x< PDF uncertainties increase again at lower neutrino energies as we move into the region of large x Low energy regime б ~ E

And just for completeness sake lets show the new and the old predictions at very low energy compared to data Note the perturbative predictions of the present work cannot be use for Q2 < 1 GeV 2 and hence we are missing a fraction of the lowest energy cross-sections. This is most significant in the smaller antineutrino cross- section. Hence no predictions are given for s < 100 GeV 2 (Eν< 53.3 GeV)

2008: Additional tables of NC cross-sections (zero-mass heavy quark treatment sNu NC(pb)Nubar NC(pb) 10^ ^ ^ ^ ^ ^

sNu/Nubar(NC)pb 10^7547/541 10^81433/ ^93424/ ^107613/ ^ / ^ /32132

Summary Updated predictions of high energy ν and νCC cross-sections Within conventional framework NLO DGLAP With systematic accounting for PDF uncertainties Including general mass variable flavour treatment of heavy quarks Relevant to neutrino telescopes: Ice-Cube, ANTARES, KM3NET air shower arrays: Pierre Auger array radio detectors: RICE, ANITA The point is to estimate how well known conventional predictions are in order to See when we really have unconventional behaviour at small-x BFKL ln(1/x) resummation non-linear gluon recombination etc hep-ph: arxiv

extras