An Architecture for Application-Based Network Operations Adrian Farrel - Old Dog Consulting Daniel King –

Slides:



Advertisements
Similar presentations
Intra-Carrier Solutions Enabled by the OIF NNI Erning Ye Nortel Networks.
Advertisements

Achieving Seamless IP Optical Network Integration OIF Interoperability Update Amy Wang, Avici Systems.
All rights reserved © 2006, Alcatel Grid Standardization & ETSI (May 2006) B. Berde, Alcatel R & I.
CURRENT APPROACH FOR NETWORK PROVISIONING Umbrella Provisioning System
G : DCM Signaling Mechanism Using GMPLS RSVP-TE ITU-T Workshop on IP-Optical, Chitose, Japan 7/11/2002 Dimitrios Pendarakis, Tellium, Inc. ITU-T.
Generalized Multiprotocol Label Switching: An Overview of Signaling Enhancements and Recovery Techniques IEEE Communications Magazine July 2001.
Application-Based Network Operations (ABNO) IETF 88 – SDN RG
A New Paradigm for Inter-Domain Traffic Engineering Adrian Farrel Juniper Networks
Limit for content Do not exceed Limit for content Do not exceed Limit for content Do not exceed Limit for content Do not exceed 1 Aria Networks Multi-domain.
Page 1 iPOP2009, Tokyo, Japan Selecting Domain Paths in Inter-Domain MPLS-TE and GMPLS Adrian Farrel, Old Dog Consulting Daniel King, Old Dog Consulting.
NEW OUTLOOK ON MULTI-DOMAIN AND MULTI-LAYER TRAFFIC ENGINEERING Adrian Farrel
The Impact of SDN On MPLS Networks Adrian Farrel Juniper Networks
Deployment of MPLS VPN in Large ISP Networks
O LD D OG C ONSULTING Optical Networking and Converged Networks Impact and Trends in Standardisation Adrian Farrel
1 LAYER 3 TSN – DRAFT 4 Jouni Korhonen, Philippe Klein July 2014 LAYER 3 FOR TSN.
Why SDN and MPLS? Saurav Das, Ali Reza Sharafat, Guru Parulkar, Nick McKeown Clean Slate CTO Summit 9 th November, 2011.
SDN-based Control and Operation of the IP Ran in 4G and LTE Environments Huaimo Chen, Quintin Zhao – Huawei
N Group0/1: Yangfei WANG z Amrita Manayil z Thangappan Madavan V K z Peng Fu z Shuo Sun z Total Slides :19 In-Operation.
PCE – OAM Handler in ABNO:
Grant agreement n° SDN architectures for orchestration of mobile cloud services with converged control of wireless access and optical transport network.
ITU-T Workshop “NGN and its Transport Networks“ Kobe, April 2006 International Telecommunication Union ITU-T Introduction to the Path Computation.
An evolutionary approach to G-MPLS ensuring a smooth migration of legacy networks Ben Martens Alcatel USA.
Draft-chen-i2rs-mpls-ldp-usecases-00/ draft-huang-i2rs-mpls-te-usecase-00 IETF 88 I2RS1 Use Cases for an Interface to MPLS Protocol draft-chen-i2rs-mpls-ldp-usecases-00/
OLD DOG CONSULTING Traffic Engineering or Network Engineering? The transition to dynamic management of multi-layer networks Adrian Farrel Old Dog Consulting.
Draft-li-isdnrg-seamless-mpls-mbh-00IETF 92 SDNRG1 Inter-SDN in Seamless MPLS for Mobile Backhaul Zhenbin Li, Rober Tao Huawei Technologies IETF 92, Dallas,
ONOS Use Cases Tom Tofigh AT&T.
Abstraction and Control of Transport Networks (ACTN) BoF
Evolution of Path Computation Towards Generalized Resource Computation Adrian Farrel Old Dog Consulting
IETF68 CCAMP1 GMPLS Control of Ethernet Forwarding Don Fedyk Loa Andersson
MPLS - 73nd IETF Minneaplis1 Composite Transport Group (CTG) Framework and Requirements draft-so-yong-mpls-ctg-framework-requirement-00.txt draft-so-yong-mpls-ctg-framework-requirement-00.txt.
Should I Migrate My MPLS-TE Network to GMPLS. And if so, how
Institute of Computer and Communication Network Engineering OFC/NFOEC, 6-10 March 2011, Los Angeles, CA Lessons Learned From Implementing a Path Computation.
Model-based Programmable Networks
PACE Workshop on New Uses of PCE Key Points Arising Notes from the PACE Workshop Vilanova i La Geltú 16 June 2014.
Interface to the Routing System
MPLS and Traffic Engineering Ji-Hoon Yun Computer Communications and Switching Systems Lab.
1 High-Level Carrier Requirements for Cross Layer Optimization Dave McDysan Verizon.
Connect. Communicate. Collaborate VPNs in GÉANT2 Otto Kreiter, DANTE UKERNA Networkshop 34 4th - 6th April 2006.
OIF NNI: The Roadmap to Non- Disruptive Control Plane Interoperability Dimitrios Pendarakis
Lucy Yong Young Lee IETF CCAMP WG GMPLS Extension for Reservation and Time based Bandwidth Service.
Dynamic Lightpath Services on the Internet2 Network Rick Summerhill Director, Network Research, Architecture, Technologies, Internet2 TERENA May.
Lucy Yong Young Lee 67 th IETF San Diego November 2006 GMPLS Extension for Reservation and Time based Bandwidth.
1 | © 2015 Infinera Open SDN in Metro P-OTS Networks Sten Nordell CTO Metro Business Group
PCE-based Computation for Inter-domain P2MP LSP draft-zhao-pce-pcep-inter-domain-p2mp-procedures-00.txt Quintin Zhao, Huawei Technology David Amzallag,
Draft-oki-pce-vntm-def-00.txt 1 Definition of Virtual Network Topology Manager (VNTM) for PCE-based Inter-Layer MPLS and GMPLS Traffic Engineering draft-oki-pce-vntm-def-00.txt.
Optical + Ethernet: Converging the Transport Network An Overview.
IRS Use Case & Requirements Shane Amante Level 3 Communications, Inc. (Speaking on behalf of several Use Case and Requirement I-D’s co-authors)
Limit for content Do not exceed Limit for content Do not exceed Limit for content Do not exceed Limit for content Do not exceed Page 1 © The.
1 Revision to DOE proposal Resource Optimization in Hybrid Core Networks with 100G Links Original submission: April 30, 2009 Date: May 4, 2009 PI: Malathi.
The Application of the Path Computation Element Architecture to the Determination of a Sequence of Domains in MPLS & GMPLS draft-ietf-pce-hierarchy-fwk-00.txt.
The Application of the Path Computation Element Architecture to the Determination of a Sequence of Domains in MPLS & GMPLS draft-king-pce-hierarchy-fwk-01.txt.
© 2013, CYAN, INC. 11 Software Defined Metro Networks TNC2013 Virtualization and Innovation Robin Massey SE Manager EMEA
Next Steps in Path Computation Element (PCE) Architectures: From Software Defined Concepts to Standards, Interoperability and Deployment CSA FP7 ICT Call.
MPLS Introduction How MPLS Works ?? MPLS - The Motivation MPLS Application MPLS Advantages Conclusion.
An evolutionary approach to G-MPLS ensuring a smooth migration of legacy networks Ben Martens Alcatel USA.
Konstantin agouros Omkar deshpande
Multi-layer Multi-domain Inter-op Test based on ACTN Architecture
Multi-layer software defined networking in GÉANT
Grid Optical Burst Switched Networks
Daniel King, Old Dog Consulting Adrian Farrel, Old Dog Consulting
Zhenbin Li, Kai Lu Huawei Technologies IETF 98, Chicago, USA
PCE Applicability for Inter-Layer MPLS and GMPLS Traffic Engineering draft-oki-pce-inter-layer-app-00.txt Mar. 20, 2006 Eiji Oki (NTT) Jean-Louis Le.
Adrian Farrel : Old Dog Consulting
Effective Network Orchestration Starts by Automating Provisioning Downloadable Figures Simon Richard.
Daniel King, Old Dog Consulting Adrian Farrel, Old Dog Consulting
MPLS-TP Survivability Framework
Daniel King, Old Dog Consulting Adrian Farrel, Old Dog Consulting
ONOS Drake Release September 2015.
SDN Controllers in the WAN
Presentation transcript:

An Architecture for Application-Based Network Operations Adrian Farrel - Old Dog Consulting Daniel King – Old Dog Consulting

Control of Today’s Networks Current network operation is not adapted to flexible networking Multiple manual configuration actions are needed for network nodes Network solutions from different vendors typically use specific OSS/NMS implementations Very long provisioning times Lack of network bandwidth flexibility and inefficient use of inherent function InternetVoiceCDNCloudBusiness Application Network OSS Metro OSS NMS Vendor A IP Core OSS Optical OSS Umbrella OSS NMS Vendor B NMS Vendor C NMS Vendor D NMS Vendor E NMS Vendor C NMS Vendor A NMS Vendor B Metro Node Vendor A Metro Node Vendor A IP Node Vendor C IP Node Vendor C IP Node Vendor C Optical Node Vendor B Optical Node Vendor B Optical Node Vendor B Network Nodes

Network Operation Requirements The network does not need to be seen any longer as a composition of individual elements Applications need to be capable of interaction with the network Support of the next generation of variable and dynamic transport characteristics Automated deployment and operation of services. “Create a new transport connection for me” “Reoptimize my network after restoration switching” “Respond to how my network is being used” “Schedule these services” “Resize tunnels”

SDN Controller for Network Operations 4 “SDN Controller” is a contentious term, it can have many different meanings: Historically the term was derived from the network domain, technology and protocol mechanism SDN controller wars are ongoing: Operators have an expectation of standards-based technologies for deploying and operating networks SDN controller vendors rarely provide multivendor interoperability using open standards Provisioning should be a compelling feature of SDN, however many SDN controllers use non-standardised APIs Typically SDN controllers have a very limited view of topology, multi-layer and multi- domain is not supported Flexibility has been notably absent from most controller architectures both in terms of southbound protocol support and northbound application requests

Network Operation Framework Building Blocks Avoiding the mistake of a single “controller” architecture As it encourages the expansion and use of specific protocols Discovery of network resources and topology management Network resource abstraction, and presentation Routing and path computation Multi-layer coordination and interworking Multi-domain & multi-vendor network resources provisioning through different control mechanisms (e.g., Optical, OpenFlow, GMPLS, MPLS) Policy Control OAM and performance monitoring A wide variety of southbound northbound protocol support Leveraging existing technologies What is currently available? Must integrate with existing and developing standards

Application-Based Network Operations (ABNO) InternetVoiceCDNCloudBusiness ABNO Optical signaling mechanisms running over network nodes enabling flexible networking and automated network provisioning over different network segments (metro, core IP, optical transport) including multiple vendors Metro Node Vendor A Metro Node Vendor B IP Node Vendor C IP Node Vendor D IP Node Vendor E Optical Node Vendor A Optical Node Vendor B Optical Node Vendor C Service Management Systems Network Controller Optical Network Nodes OSS NMS Application-Based Network Operation (ABNO) framework. “A PCE-based Architecture for Application-based Network Operations” draft-farrkingel-pce-abno-architecture

ABNO - A PCE-enabled Network Controller 7 PCE provides a set of tools for deterministic path computation Prior to PCE network operators might use complex planning tools to compute paths and predict network behavior PCE reduces the onerous network operation process of coordinating planning, computation, signaling and placement of LSP-based services PCE has evolved: Computes single and dependant LSPs in a stateless manner Concurrent optimization of sets of LSPs Performing P2P and P2MP path computation Hierarchical PCE Architecture Stateful computation and monitoring of LSPs The state in “stateful” is an LSP-DB Stored information about some or all LSPs in the network Active PCE, resize or recomputed based on BW or network triggers PCE-initiated LSP setup Delegate LSP control to the PCE Recommend rerouting of LSPs

Application-Based Network Operation (ABNO) “Standardized” components and co-operation. Policy Management Network Topology LSP-DB TED Inventory Management Path Computation and Traffic Engineering PCE, PCC Stateful & Stateless Online & Offline P2P, P2MP, MP2MP Multi-layer Coordination Virtual Network Topology Manager Network Signaling & Programming RSVP-TE Netconf and XMPP ForCES and OpenFlow Interface to the Routing System (I2RS)

ABNO Use Cases The following slides present various use cases shaping the development of ABNO: Multi-layer Path Provisioning Multi-layer Restoration Network Optimization after Restoration

ABNO - Path Provisioning (Path) 1.OSS requests for a path between two L3 nodes. 2.ABNO Controller verifies OSS user rights using the Policy Manager. 3.ABNO Controller requests to L3-PCE (active) for a path between both locations. 4.As L3-PCE finds a path, it configures L3 nodes using Provisioning Manager. 5.Provisioning Manager configures L3 nodes using the required interface (PCEP, OpenFlow, etc.) coordinating with any control plane (RSVP-TE). 6.OSS is notified that the connection has been set-up. OSS ABNO Controller OAM Handler Policy Agent ALTO Server Databases TED LSP-DB Databases TED LSP-DB Provisioning Manager Client Network Layer (L3) Server Network Layer (L0) I2RS Client L3 PCE VNTM L0 PCE 2 6 5

ABNO - Restoration 1.The OAM Handler receives failure events from the network 2.Upon network failure, the OAM Handler notifies the OSS of all failed E-2-E connection and possible root cause. 3.OSS requests a new E-2-E connection. 4.ABNO controller verifies request via the Policy Manager. 5.ABNO controller requests to L3-PCE (active) for a path between both locations. 6.As L3-PCE finds a path, it configures L3 nodes using Provisioning Manager. 7.Provisioning Manager configures L3 nodes using the required interface (PCEP, OpenFlow, etc.) coordinating with any control plane (RSVP-TE). 8.OAM Handler verifies new connectivity. 9.OSS is notified that the new IP links are up and tested (SNMP, etc.). OSS ABNO Controller OAM Handle r Policy Agent Databases TED LSP-DB Databases TED LSP-DB Provisioning Manager Client Network Layer (L3) Server Network Layer (L0) I2RS Client VNTM ALTO Server L0 PCE L3 PCE

Adaptive Network Management : Re-Optimization OSS/NMS / Application Service Orchestrator ABNO Controller OAM Handler Policy Agent ALTO Server Databases TED LSP-DB Databases TED LSP-DB Provisioning Manager Client Network Layer (L3) Server Network Layer (L0) I2RS Client L3 PCE VNTM L0 PCE a 5b OSS initiates a request for multi-layer re- optimization. 2.The ABNO controller checks applicable policies and inspects LSP-DB. Obtains relationship between virtual links and forwarding adjacencies and transport paths. 3.The ABNO controller decides which L3 paths are subject to re-routing and the corresponding L0 paths. 4.The ABNO controller requests new paths to the L3 PCE, using GCO and passing the currently used resources 5.L3 PCE finds L3 paths, requesting the VNTM for Virtual Links. Virtual Links may need to be resolved via L0 PCE. 6.The responses are passed to the ABNO controller 7.The ABNO controller requests the VNTM to provision the set of paths, avoiding double booking of resources 8.The VNTM proceeds to identify the sequence of re-routing operations for minimum disruption and requests the provisioning manager to perform the corresponding re- routing. 9.Provisioning Manager sends the required GMPLS requests to the LO network nodes. 10.OSS is notified that the re-optimization is complete. 10

Next Steps for ABNO Application-Based Network Operations Continued definition of use cases. Continued identification of protocol, interface and functionality gaps. Service interface to/from application/OSS/NMS. Definition of service templates. Investigation of protocol methods for communicating templates.

Questions? 14 Adrian Farrel - Old Dog Consulting Daniel King – Old Dog Consulting This work was supported in part by the European Union FP-7 IDEALIST project under grant agreement number