Selected Topics in AdS/CFT lecture 1

Slides:



Advertisements
Similar presentations
Analysis of QCD via Supergravity S. Sugimoto (YITP) based on hep-th/ (T. Ibaraki + S.S.) Windows to new paradigm in particle Sendai.
Advertisements

Martín Schvellinger Instituto de Física de La Plata - CONICET Departamento de Física - UNLP The gauge/gravity duality and Non-Relativistic Quantum Field.
Baryons with Holography Hideo SUGANUMA ( Kyoto Univ. ) Toru KOJO ( Kyoto Univ. ) Kanabu NAWA ( RCNP ) in collaboration with.
Brane-World Inflation
Summing planar diagrams
String Theory A picture book.
Topological current effect on hQCD at finite density and magnetic field Pablo A. Morales Work in collaboration with Kenji Fukushima Based on Phys. Rev.
Gauge/Gravity Duality 2 Prof Nick Evans AdS/CFT Correspondence TODAY Quarks Deforming AdS Confinement Chiral Symmetry Breaking LATER Other brane games.
A New Holographic View of Singularities Gary Horowitz UC Santa Barbara with A. Lawrence and E. Silverstein arXiv: Gary Horowitz UC Santa Barbara.
Giant Magnon and Spike Solutions in String Theories Bum-Hoon Lee Center for Quantum SpaceTime(CQUeST)/Physics Dept. Sogang University, Seoul, Korea PAQFT08,
Chanyong Park 35 th Johns Hopkins Workshop ( Budapest, June 2011 ) Based on Phys. Rev. D 83, (2011) arXiv : arXiv :
3rd International Workshop On High Energy Physics In The LHC Era.
Gauge/Gravity Duality 2 Prof Nick Evans AdS/CFT Correspondence TODAY Quarks Deforming AdS Confinement Chiral Symmetry Breaking LATER Other brane games.
Spiky strings, light-like Wilson loops and a pp-wave anomaly M. Kruczenski Purdue University Based on: arXiv: arXiv: A. Tseytlin, M.K.
Entanglement in Quantum Critical Phenomena, Holography and Gravity Dmitri V. Fursaev Joint Institute for Nuclear Research Dubna, RUSSIA Banff, July 31,
Strings in AdS pp-waves M. Kruczenski Purdue University Based on: arXiv: A. Tseytlin, M.K. arXiv: R. Ishizeki, A. Tirziu, M.K. + work.
Field Theory: The Past 25 Years Nathan Seiberg (IAS) The Future of Physics October, 2004 A celebration of 25 Years of.
Equations of state and compact stars in gauge/gravity duality
A CRITICAL POINT IN A ADS/QCD MODEL Wu, Shang-Yu (NCTU) in collaboration with He, Song, Yang, Yi and Yuan, Pei-Hung , to appear in JHEP
The Quantum Space-Time Juan Maldacena Institute for Advanced Study 25 th Solvay Conference October 2011.
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
Heavy Quark Potential at Finite-T in AdS/CFT Yuri Kovchegov The Ohio State University work done with J. Albacete and A. Taliotis, arXiv: [hep-th]
GAUGE/GRAVITY AND HEAVY ION PHYSICS How string theory might say something about strong coupling Wilke van der Schee June 29, 2011.
Louisville March 22, 2006 Andrew Chamblin Memorial An AdS Thermal Properties of Strongly Coupled Gauge Theories with Fundamental Matter from Gauge/Gravity.
Black Holes, Entropy, and Information Gary Horowitz UCSB.
“Einstein Gravity in Higher Dimensions”, Jerusalem, Feb., 2007.
“Models of Gravity in Higher Dimensions”, Bremen, Aug , 2008.
A New Endpoint for Hawking Evaporation Gary Horowitz UCSB hep-th/ Gary Horowitz UCSB hep-th/
Shear viscosity of a highly excited string and black hole membrane paradigm Yuya Sasai Helsinki Institute of Physics and Department of Physics University.
Multi-quark potential from AdS/QCD based on arXiv: Wen-Yu Wen Lattice QCD.
Quantum Gravity As an Ordinary Gauge Theory Juan Maldacena Institute for Advanced Study Princeton, New Jersey.
Domain-wall/QFT correspondence Wen-Yu Wen Academia Sinica Feb 24, 2006 A Bridge Connecting Gravity and Gauge Theory.
5d truncation ignoring the 5-sphere (SO(6) gauge symmetry) There are 42 scalars - a 20 of SO(6) - a 10 and 10 of SO(6) - scalar dilaton-axion, singlets.
AdS/CFT Correspondence and Entanglement Entropy Tadashi Takayanagi (Kyoto U.) Based on hep-th/ [Phys.Rev.Lett.96(2006)181602] hep-th/ [JHEP.
Holographic Models for High-Tc superconductors Jiunn-Wei Chen (NTU) w/ Ying-Jer Kao, Debaprasad Maity, Wen-Yu Wen and Chen-Pin Yeh (talk largely based.
Schwarzschild Radius and Black Hole Thermodynamics with Corrections from Simulations of SUSY Matrix Quantum Mechanics Talk at “Black Holes and Quantum.
Heavy Quarkonium States with the Holographic Potential Defu Hou (CCNU) From Strings to Things, Seattle, May 2008 With Hai-cang Ren, JHEP 0801:029,2008.
II Russian-Spanish Congress “Particle and Nuclear Physics at all scales and Cosmology”, Saint Petersburg, Oct. 4, 2013 RECENT ADVANCES IN THE BOTTOM-UP.
The fast life of holographic mesons Aninda Sinha Perimeter Institute, Canada. with Robert Myers arXiv:0802.nnnn Quark Matter 2008, Jaipur, India.
Transverse Momentum Broadening of a Fast Quark in a N=4 Yang Mills Plasma Jorge Casalderrey-Solana LBNL Work in collaboration with Derek Teany.
Holographic QCD in the medium
Wilsonian approach to Non-linear sigma models Etsuko Itou (YITP, Japan) Progress of Theoretical Physics 109 (2003) 751 Progress of Theoretical Physics.
Strings, Gravity and the Large N Limit of Gauge Theories Juan Maldacena Institute for Advanced Study Princeton, New Jersey.
Gauge/Gravity Duality Prof Nick Evans Big picture – slides Key computations - board TODAY Introduction Strings & Branes AdS/CFT Correspondence QCD-like.
Heidelberg, June 2008 Volker Schomerus - DESY Hamburg - Of Mesons and Metals – Bethe & the 5th Dimension.
Three dimensional conformal sigma models Collaborated with Takeshi Higashi and Kiyoshi Higashijima (Osaka U.) Etsuko Itou (Kyoto U. YITP) hep-th/
Supersymmetric three dimensional conformal sigma models Collaborated with Takeshi Higashi and Kiyoshi Higashijima (Osaka U.) Etsuko Itou (Kyoto U. YITP)
The nonperturbative analyses for lower dimensional non-linear sigma models Etsuko Itou (Osaka University) 1.Introduction 2.The WRG equation for NLσM 3.Fixed.
Microscopic entropy of black holes : a two-dimensional approach M. Cadoni, Capri 2004 Abstract Two-dimensional gravity models allow in many situations.
B.-H.L, R. Nayak, K. Panigrahi, C. Park On the giant magnon and spike solutions for strings on AdS(3) x S**3. JHEP 0806:065,2008. arXiv: J. Kluson,
1 Bhupendra Nath Tiwari IIT Kanpur in collaboration with T. Sarkar & G. Sengupta. Thermodynamic Geometry and BTZ black holes This talk is mainly based.
Heavy quark energy loss in finite length SYM plasma Cyrille Marquet Columbia University based on F. Dominguez, C. Marquet, A. Mueller, B. Wu and B.-W.
Quantum mechanics and the geometry of spacetime Juan Maldacena PPCM Conference May 2014.
Gauge/gravity duality in Einstein-dilaton theory Chanyong Park Workshop on String theory and cosmology (Pusan, ) Ref. S. Kulkarni,
ArXiv: (hep-th) Toshiaki Fujimori (Tokyo Institute of Technology) Minoru Eto, Sven Bjarke Gudnason, Kenichi Konishi, Muneto Nitta, Keisuke Ohashi.
New Insights into Quantum Gravity from Holography Gary Horowitz UC Santa Barbara with N. Engelhardt ( , and in progress)
Bum-Hoon Lee Sogang University, Seoul, Korea D-branes in Type IIB Plane Wave Background 15th Mini-Workshop on Particle Physics May 14-15, 2006, Seoul National.
Andrej Ficnar Columbia University Hard Probes 2010, Eilat, Israel October 12, 2010 Nonconformal Holography of Heavy Quark Quenching Andrej Ficnar, Jorge.
“Applied” String Theory Pinaki Banerjee The Institute of Mathematical Sciences, Chennai Department of Physics, Visva Bharati 12 th July, 2013.
Geometric Monte Carlo and Black Janus Geometries
3 rd Karl Schwarzschild Meeting, Germany 24 July 2017
Quantum Mechanical Models for Near Extremal Black Holes
A rotating hairy BH in AdS_3
Exact Results in Massive N=2 Theories
Andrej Ficnar Columbia University
Solutions of black hole interior, information paradox and the shape of singularities Haolin Lu.
dark matter Properties stable non-relativistic non-baryonic
Quark Mass in Holographic QCD
Status of AdS/QCD SangJin Sin
Excited QCD 2010, 31 Jan.-6 Feb., 2010 Tatra National Park (Slovakia)
Presentation transcript:

Selected Topics in AdS/CFT lecture 1 Soo-Jong Rey Seoul National University 1st Asian Winter School in String Theory January 2007

Topics: Loops, Defects and Plasma Review of AdS5/SYM4 Wilson/Polyakov loops Baryons, Defects Time-Dependent Phenomena

Starting Point string theory:open + closed strings low-energy limit of string theory: open string ! gauge theory (spin=1) closed string ! gravity theory (spin=2) channel duality: open $ closed

Channel Duality open string channel time closed string channel gauge dynamics gravity dynamics

Gauge – Gravity Duality keypoint: “gauge theory dynamics” (low energy limit of open string dynamics) is describable by “gravity dynamics” (low-energy limit of closed string dynamics) and vice versa

Tool Kits for AdS/CFT elementary excitations: open string + closed string solitons: D-branes (quantum) + NS-branes (classical) Mach’s principle: spacetime à elementary + soliton sources “holography”: gravity fluctuations = source fluctuations

p-Brane (gravity description) string effective action S = s d10x [e-2(R(10)+(r )2+|H3|2 + …) +( p |Gp+2|2 + … ) ] = (1/g2st)(NS-NS sector) + (R-R sector) H3 = d B2, Gp+2 = d Cp+1 etc. R-R sector is “quantum” of NS-NS sector

elementary and solitons fixed “magnetic” charge, energy-minimizing static configurations (necessary condition for BPS states) NS 5-brane: E = s g-2st [(r )2 + H32] > g-2st sS3 e-2 H3 F-string: E = s [g-2st (r )2 + g2st K72] > g0st sS7 K7 Mass: M(string) ~ 1 ; M(NS5) ~ (1/g2st) “elementary” ; “soliton”

p-brane: in between p-brane: E = s g-2st (r )2 + (Gp+2)2 > g-1st s e- Gp+2 M(p-brane) » (1/gst) p-brane = “quantum soliton”: more solitonic than F-string but less solitonic than NS5-brane F-string $ p-brane $ NS5-brane quantum treatment of p-brane is imperative

Dp-brane (CFT description) strings can end on it open string string endpoints labelled by Chan-Paton factors ( ) = (i,j) mass set by disk diagram M ~ 1/gst ---- identifiable with p-brane QL = QR (half BPS object)

SYMp+1 at Low-Energy infinite tension limit (’ 0) open strings  rigid rods (Mw ~  r/’) (N,N) string dynamics U(N) SYM(P+1) L = g-2YM Tr ( Fmn2 “||” + (Dm a)2 + [a, b]2 “?” + …. )

Static source: heavy quarks semi-infinite string (M ~ 1) at rest or constant velocity (static source) labelled by a single Chan-Paton factor ( ) = (i) heavy (anti)quark in (anti)fundamental rep.

Perturbation theory (1) large N conformal gauge theory : double expansion in 1/N and 2 = gYM2 N SYM = (N /2) s d4 x Tr (Fmn2 + (Dm )2 + …) planar expansion: (N /2)V – E NF = (1/N)2h-2 (2)E-V 2 : nonlinear interactions 1/N: quantum fluctuations observable: h l (1/N)2h-2(2)l Cl, h

Perturbation theory (2) Weak coupling closed string theory: double expansion in gst and ’ ’ : string worldsheet fluctuation Sstring= (½’) s d2   X ¢  X gst : string quantum loop fluctuation SSFT =  * QB  + gst  *  *  observables = Sh m gst2h – 2 (2’ p2)m Dm, h

Identifying the Two Sides…. large-N YM and closed string theory have the same perturbation expansion structure gst $ (1/N) (’/R2) $ 1/ where R = characteristic scale Maldacena’s AdS/CFT correspondence: “near-horizon”(R) geometry of D3-brane = large-N SYM3+1 at large but fixed  not only perturbative level but also nonperturbatively (evidence?)

D3-Brane Geometry 10d SUGRA(closed string)+4d SYM (D3-brane): Stotal = S10d + sd4 x (-e- TrFmn2+ C4….) Solution ds2 = Z-1/2 dx23+1 + Z1/2 dy26 G5 = (1+*) dVol4 Æ d Z-1 where Z = (1+R4/r4); r = |y| and R4 = 4 gst N ’2 r ! 1: 10d flat spacetime r ! 0 : characteristic curvature scale = R

Identifications At large N, curvedness grows with g2st(N/gst)=gstN D-brane stress tensor grows with (N/gst) At large N, curvedness grows with g2st(N/gst)=gstN Near D3-brane, spacetime= AdS5 x S5 4d D3-brane fluct. $ 10d spacetime fluct. (from coupling of D3-brane to 10d fields) Tr (FmpFnp) $ metric gmn Tr (FmnFmn) $ dilaton  Tr(FmpF*np) $ Ramond-Ramond C, Cmn

AdS/CFT correspondence Dirichlet problem in AdS5 or EAdS5=H5 Zgravity = exp (-SAdS5(bulk,a, 1a)) = ZSYM =s[dA] exp(-SSYM - s a 1a Oa) AdS5

AdS5 In flat 4+2 dimensional space ds2 = - dX02 – d X52 + a=14 d Xa2 embed hyperboloid X02 + X52 - a=14 Xa2 = R2 SO(4,2) invariant, homogeneous AdS5 = induced geometry on hyperboloid <homework> derive the following coordinates

Global coordinates: ds2 = R2(-cosh2 d2+d2+sinh2 d32) boundary = Rt £ S3 Poincare coordinates: ds2=R2[r2(-dt2 + dx2 + dy2 + dz2)+ r-2dr2] boundary = Rt £ R3

holographic scaling dimensions wave eqn for scalar field of mass m 2 solns: normalizable vs. non-normalizable modes

Why AdS Throat = D3-Brane? D-brane absorption cross-section: SUGRA computation = SYM computation N D3-branes = flat flat AdS5 AdS_5 “interior” in gravity description = N D3-branes in gauge description

Another argument D-instantons probing (Euclidean) AdS5 For U(N) gauge group, “homogeneous” instanton number < N (otherwise inhomogeneous) Q D-instanton cluster in approx. flat region SDinstanton = -(1/gst ’2) TrQ[1, 2]2 + …. < Tr(1)2 > » QL2, <Tr(2)2 > » Q2 gst ’2 / L2 rotational symmetry implies L4 = Q gst ’2 = N gst ’2

How can it be that 5d = 4d? extensive quantities in 4d SYM theory scales as [length]4 Extensive quantities in 5d AdS gravity scales as [length]5 So, how can it be that quantities in 4d theory is describable by 5d theory?? [Question] Show both area and volume of a ball of radius X in AdSd scales as Xd-1!

Entropy Counting (3+1) SYM on V3 with UV cutoff a AdS5 gravity on V3 with UV cutoff a

Shall we test AdS/CFT? Recall that heavy quarks are represented by fundamental strings attached to D3-brane now strings are stretched and fluctuates inside AdS5 Let’s compute interaction potential between quark and antiquark Do we obtain physically reasonable answers?

Static Quark Potential at Zero Temperature Notice: Square-Root --- non-analyticity for  exact 1/r --- conformal invariance

Notice: R4=gstN’2 ’2 cancels out!

Holography (boundary = bulk) YM distance scale r=0 AdS radial scale r=1 Anything that takes place HERE (AdS5) --- --- is a result of that taking place HERE (R3+1)

Heavy Meson Configuration r=0 AdS radial scale r=oo YM distance scale bare quark bare anti-quark

What have we evaluated? rectangular Wilson loop in N=4 SYM W[C] = Tr P exp sC (i Am dxm + a d ya ) gauge field part = Aharonov-Bohm phase scalar field part = W-boson mass unique N=4 supersymmetric structure with contour in 10-dimensions

T=0 vs. T>0 SYM Theory T=0 (zero-temperature 4d N=4 SYM): ds2 = r2 (-dt2+dx2 ) + dr2/r2 + (dS5)2 r = 5th dim // 4d energy scale: 0 < r < 1 T>0 (finite-temperature 4d N=4 SYM): ds2 = r2 (- F dt2+dx2) + F-1 dr2/r2+(dS5)2 F = (1 - (kT)4/r4): kT < r <1 5d AdS Schwarzschild BH = 4d heat bath

Static Quark Potential at Finite Temperature Notice: Nonanalyticity in  persists exact 1/r persists potential vanishes beyond r*

UV-IR relation for T>0 T=0 relation Maximum inter-quark distance! T>0 relation U*/M

Heavy Meson Configuration (T > 0) r=M r=0 AdS radial scale r=oo YM distance scale bare quark bare anti-quark

Application: D3-branes on “thermal” S1 “thermal S1” breaks N=4 susy completely At low-energy, 3d Yang-Mills + (junks) 5d AdS replaced by 5d Euclidean black hole (time $ space) glueball spectrum is obtainable by studying bound-state spectrum of gravity modes Note: 4d space-time, topology: gravity // gauge

YM2+1 glueball spectrum 0++: solve dilaton eqn=2nd order linear ode result: N=3 lattice N=oo lattice AdS/CFT . 4.329(41) 4.065(55) 4.07(input) * 6.52 (9) 6.18 (13) 7.02 ** 8.23 (17) 7.99 (22) 9.92 *** - - 12.80 [M. Teper]

YM3+1 glueball spectrum Use T>0 D4-brane instead 0++: solve dilaton eqn=2nd-order linear ODE result: N=3 lattice AdS/CFT . 1.61(15) 1.61(input) * 2.8 2.38 ** - 3.11 *** - 3.82 [M. Teper] other glueballs fit reasonably well (why??)

The Story of Square-Root branch cut from strong coupling? artifact of N1 limit heuristically, saddle-point of matrices < Tr eM > = s [dM] (Tr eM) exp (--2 Tr M2) Recall modified Bessel function