Entanglement-enhanced communication over a correlated-noise channel

Slides:



Advertisements
Similar presentations
Mathematical Formulation of the Superposition Principle
Advertisements

Xkcd Xkcd.com. Section 3 Recap ► Angular momentum commutators:  [J x, J y ] = iħJ z etc ► Total ang. Mom. Operator: J 2 = J x 2 + J y 2 +J z 2 ► Ladder.
Parametric Down-conversion and other single photons sources December 2009 Assaf Halevy Course # 77740, Dr. Hagai Eisenberg 1.
Geant4 Low Energy Polarized Compton Processes Gerardo Depaola * Francesco Longo + Francesco Longo + * National University of Córdoba (Argentina) + University.
Quantum Information Stephen M. Barnett University of Strathclyde The Wolfson Foundation.
Quantum limits in optical interferometry R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta 2, K. Macieszczak 1,2, R. Schnabel.
Emergence of Quantum Mechanics from Classical Statistics.
Angular momentum of the photon – experimental proposal J erzy Kosek, Poland 1.Introduction 2.Linear and angular momentum of the photon. 3.Measurement of.
Quantum enhanced metrology R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B. Smith 2, J. Lundeen 2, M. Kacprowicz.
Analyse de la cohérence en présence de lumière partiellement polarisée François Goudail Laboratoire Charles Fabry de l’Institut d’Optique, Palaiseau (France)
Fundamental limits in Information Theory Chapter 10 :
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Analysis of quantum entanglement of spontaneous single photons
Characterization of statistical properties of x-ray FEL radiation by means of few-photon processes Nina Rohringer and Robin Santra.
The Integration Algorithm A quantum computer could integrate a function in less computational time then a classical computer... The integral of a one dimensional.
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.
Imaging With Entangled Photons Timothy Shokair Physics 138 May 10, 2005.
Fermions and non-commuting observables from classical probabilities.
Quantum Mechanics from Classical Statistics. what is an atom ? quantum mechanics : isolated object quantum mechanics : isolated object quantum field theory.
Quantum correlations. Adam W. Majewski. Quantum entanglement. Ghhjhjj Quantum entanglement is a phenomenon that occurs when particles (subsystems) are.
Quantum One: Lecture 7. The General Formalism of Quantum Mechanics.
Study and characterisation of polarisation entanglement JABIR M V Photonic sciences laboratory, PRL.
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 14 (2009)
Quantum Physics Mathematics
Manipulating Continuous Variable Photonic Entanglement Martin Plenio Imperial College London Institute for Mathematical Sciences & Department of Physics.
Quantum-optics experiments in Olomouc Jan Soubusta, Martin Hendrych, Jan Peřina, Jr., Ondřej Haderka Radim Filip, Jaromír Fiurášek, Miloslav Dušek Antonín.
Decoherence-free/Noiseless Subsystems for Quantum Computation IPQI, Bhubaneswar February 24, 2014 Mark Byrd Physics Department, CS Department Southern.
Security of practical quantum cryptography with heralded single photon sources Mikołaj Lasota 1, Rafał Demkowicz-Dobrzański 2, Konrad Banaszek 2 1 Nicolaus.
Pure-state, single-photon wave-packet generation by parametric down conversion in a distributed microcavity M. G. Raymer, Jaewoo Noh* Oregon Center for.
Jian-Wei Pan Decoherence-free sub-space and quantum error-rejection Jian-Wei Pan Lecture Note 7.
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Quantum Physics Mathematics. Quantum Physics Tools in Real Life Reality.
Experimental generation and characterisation of private states Paweł Horodecki Wydział Fizyki Technicznej i Matematyki Stosowanej, Politechnika Gdańska.
Czesław Radzewicz Warsaw University Poland Konrad Banaszek Nicolaus Copernicus University Toruń, Poland Alex Lvovsky University of Calgary Alberta, Canada.
The private capacities of a secret shared reference frame Patrick Hayden (McGill) with: PRA 75: (2005) ??? Stephen Bartlett Robert Spekkens arXiv:quant-ph/
Multi-Partite Squeezing and SU (1,1) Symmetry Zahra Shaterzadeh Yazdi Institute for Quantum Information Science, University of Calgary with Peter S. Turner.
Photon Efficiency Measures & Processing Dominic W. Berry University of Waterloo Alexander I. LvovskyUniversity of Calgary.
Information Processing by Single Particle Hybrid Entangled States Archan S. Majumdar S. N. Bose National Centre for Basic Sciences Kolkata, India Collaborators:
Quantum Dense coding and Quantum Teleportation
Characterisation of non-classical light sources for quantum information technologies Wojciech Wasilewski Michał Karpiński Piotr Wasylczyk Czesław Radzewicz.
Bell Measurements and Teleportation. Overview Entanglement Bell states and Bell measurements Limitations on Bell measurements using linear devices Teleportation.
CHAPTER 5 SIGNAL SPACE ANALYSIS
Under the Influence of Spectral Entanglement: Polarization-Entanglement Swapping and Fusion Gates Travis Humble * and Warren Grice, Oak Ridge National.
Multiparticle Entangled States of the W- class, their Properties and Applications A. Rodichkina, A. Basharov, V. Gorbachev Laboratory for Quantum Information.
LPHYS’07 – Leon – August 22 nd 2007 Alessandro Zavatta, Valentina Parigi, Myungshik Kim, and Marco Bellini Istituto Nazionale di Ottica Applicata (INOA)
Polarization descriptions of quantized fields Anita Sehat, Jonas Söderholm, Gunnar Björk Royal Institute of Technology Stockholm, Sweden Pedro Espinoza,
Quantum Two 1. 2 Angular Momentum and Rotations 3.
Operated by Los Alamos National Security, LLC for NNSA Dynamics of modulated beams Operated by Los Alamos National Security, LLC, for the U.S. Department.
Entanglement and Optimal Strings of Qubits for Memory Channels Laleh Memarzadeh Sharif University of Technology IICQI 7-10 Sept 2007 Kish Island.
Density matrix and its application. Density matrix An alternative of state-vector (ket) representation for a certain set of state-vectors appearing with.
Chapter 3 Postulates of Quantum Mechanics. Questions QM answers 1) How is the state of a system described mathematically? (In CM – via generalized coordinates.
Multi-photon Absorption Rates for N00N States William Plick, Christoph F. Wildfeuer, Jonathan P. Dowling: Hearne Institute for Theoretical Physics, LSU.
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Qudit Implementations with Energy-Time Entangled Photons 1 Bänz Bessire Quantum Optics Lab – The Stefanov Group.
Spontaneous Parametric Down Conversion and The Biphoton
Lecture from Quantum Mechanics. Marek Zrałek Field Theory and Particle Physics Department. Silesian University Lecture 6.
Sense and sensitivity:,,robust’’ quantum phase estimation R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B.
QUANTUM OPTICS LAB IAP, UNIVERSITÄT BERN Characterization and manipulation of frequency entangled qudits 1 Bänz Bessire Quantum Optics Lab – The Stefanov.
Conservation of Vacuum in an Interferometer
ENTANGLED BRIGHT SQUEEZED VACUUM
Mathematical Formulation of the Superposition Principle
Coherent and squeezed states of the radiation field
Matrix Product States in Quantum Metrology
Jean Christian Boileau (University of Toronto)
M. Stobińska1, F. Töppel2, P. Sekatski3,
Quantum One.
Quantum Information with Continuous Variables
Quantum State and Process Measurement and Characterization
Quantum Two.
Quantum One.
Presentation transcript:

Entanglement-enhanced communication over a correlated-noise channel Squeezing eigenmodes in parametric down-conversion Entanglement-enhanced communication over a correlated-noise channel Andrzej Dragan Wojciech Wasilewski Czesław Radzewicz Warsaw University Jonathan Ball University of Oxford Konrad Banaszek Nicolaus Copernicus University Toruń, Poland Alex Lvovsky University of Calgary National Laboratory for Atomic, Molecular, and Optical Physics, Toruń, Poland

All that jazz Sender Receiver Mutual information: Channel capacity:

Depolarization in an optical fibre Independently of the averaged output state has the form: Photon in a polarization state Random polarization transformation V H Jeżeli każda transformacja unitarna może się zdarzyć z równym prawdopodobieństwem (a matematycy wiedzą co to znaczy, zbiór transformacji tworzy grupę Liego a ta ma kanoniczną miarę/rozkład prawdopodobieństwa), to na wyjściu mamy to co mamy... H V 1/2 Capacity of coding in the polarization state of a single photon:

Information coding Sender: V H V Probabilities of measurement outcomes: H&H, V&V H&V, V&H 2/3 1/3 H Capacity per photon pair:

Collective detection Probabilities of measurement outcomes: 2&0, 0&2 1&1 1 1/2 Pierwszy foton musimy troche opoznic Capacity:

Entangled states are useful! Probabilities of measurement outcomes: 2&0, 0&2 1&1 1 Capacity:

Proof-of-principle experiment 2&0, 0&2 1&1 1 1/2 Separable ensemble: These are optimal ensembles for separable and entangled inputs (assuming collective detection), which follows from optimizing the Holevo bound. J. Ball, A. Dragan, and K.Banaszek, Phys. Rev. A 69, 042324 (2004) 2&0, 0&2 1&1 1 Entangled ensemble:

Source of polarization-entangled pairs P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Phys. Rev. A 60, R773 (1999) For a suitable polarization of the pump pulses, the generated two-photon state has the form: Stare (jeden wiek) odwieczne pytanie: powinnismy dodawac prawdopodobieństwa (procesy rozróżnialne) czy tez amplitudy prawdopodobieństwa (procesy nierozróżnialne). Chcielibyśmy jakoś testować spójność tej superpozycji. With a half-wave plate in one arm it can be transformed into: or

Experimental setup Triplet events: D1 & D2 D3 & D4 Singlet events: K. Banaszek, A. Dragan, W. Wasilewski, and C. Radzewicz, Phys. Rev. Lett. 92, 257901 (2004) Triplet events: D1 & D2 D3 & D4 Singlet events: D1 & D3 D2 & D3 D2 & D3 D2 & D4

Experimental results

Dealing with collective depolarization Phase encoding in time bins: fixed input polarization, polarization-independent receiver. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, Phys. Rev. Lett. 82, 2594 (1999). Decoherence-free subspaces for a train of single photons. J.-C. Boileau, D. Gottesman, R. Laamme, D. Poulin, and R. W. Spekkens, Phys. Rev. Lett. 92, 017901 (2004).

General scenario Physical system: arbitrarily many photons N time bins that encompass two orthogonal polarizations How many distinguishable states can we send via the channel? What is the biggest decoherence-free subspace?

Mathematical model General transformation: where: – the entire quantum state of light across N time bins – element of U(2) describing the transformation of the polarization modes in a single time bin. – unitary representation of W in a single time bin We will decompose with and

Schwinger representation Ordering Fock states in a single time bin according to the combined number of photons l: ... Representation of W: ... Here is (2j+1)-dimensional representation of SU(2). Consequently has the explicit decomposition in the form:

Decomposition Decomposition into irreducible representations: Integration over a removes coherence between subspaces with different total photon number L. Also, no coherence is left between subspaces with different j. tells us: how many orthogonal states can be sent in the subspace j dimensionality of the decoherence-free subsystem Recursion formula for : J. L. Ball and K. Banaszek, quant-ph/0410077; Open Syst. Inf. Dyn. 12, 121 (2005) Biggest decoherence-free subsystems have usually hybrid character!

Questions Relationship to quantum reference frames for spin systems [S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Phys. Rev. Lett. 91, 027901 (2003)] Partial correlations? Linear optical implementations? How much entanglement is needed for implementing decoherence-free subsystems? Shared phase reference? Self-referencing schemes? [Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, Phys. Rev. Lett. 91, 087901 (2003)] Other decoherence mechanisms, e.g. polarization mode dispersion?

Multimode squeezing – Single-mode model: SHG Single-mode model: PDC Brutal reality (still simplified): [See for example: M. Matuszewski, W. Wasilewski, M. Trippenbach, and Y. B. Band, Opt. Comm. 221, 337 (2003)] –

Perturbative regime The wave function up to the two-photon term: W. P. Grice and I. A. Walmsley, Phys. Rev. A 56, 1627 (1997); T. E. Keller and M. H. Rubin, Phys. Rev A 56, 1534 (1997) Schmidt decomposition for a symmetric two-photon wave function: C. K. Law, I. A. Walmsley, and J. H. Eberly, Phys. Rev. Lett. 84, 5304 (2000) We can now define eigenmodes which yields: The spectral amplitudes characterize pure squeezing modes

Decomposition for arbitrary pump As the commutation relations for the output field operators must be preserved, the two integral kernels can be decomposed using the Bloch-Messiah theorem: S. L. Braunstein, quant-ph/9904002; see also R. S. Bennink and R. W. Boyd, Phys. Rev. A 66, 053815 (2002) 

Squeezing modes The Bloch-Messiah theorem allows us to introduce eigenmodes for input and output fields: which evolve according to describe modes that are described by pure squeezed states tell us what modes need to be seeded to retain purity Some properties: For low pump powers, usually a large number of modes becomes squeezed with similar squeezing parameters Any superposition of these modes (with right phases!) will exhibit squeezing The shape of the modes changes with the increasing pump intensity! This and much more in a poster by Wojtek Wasilewski

The End

Theory Everything that emerges are Werner states One-dimensional optimization problem for the Holevo bound What about phase encoding?

Recursion formula N bins, L photons ... L–L′ photons Decompostion of the corresponding su(2) algebra: If we subtract one time bin: N bins, L photons N-1 bins, L′ photons ... L–L′ photons

Direct sum The product of two angular momentum algebras has the standard decomposition as: Therefore the algebra for L photons in N time bins can be written as a triple direct sum:

Decoherence-free subsystems Rearranging the summation order finally yields: Underlined entries with correspond to pure phase encoding (with all the input pulses having identical polarizations) – in most cases we can do better than that!