Mixed-valence vanadates at high-pressures Andrzej Grzechnik Institute of Crystallography, RWTH Aachen University.

Slides:



Advertisements
Similar presentations
Valence instabilities of gold in perovskite structures The relativistic effects in gold stabilizes enormously the 6s level and destabilizes the 5d levels.
Advertisements

A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
1 Comparing magnetic SrMO 3 perovskites M= 3d vs. 4d Leo Lamontagne MTRL 286G 6/2/2014.
Charge, Orbital and Spin Ordering in RBaFe 2 O 5+x Perovskites Patrick M. Woodward Department of Chemistry Ohio State University Pavel Karen Department.
Metals: Bonding, Conductivity, and Magnetism (Ch. 6)
Chapter 7 Ionic and Metallic Bonding
1 Light metal borohydrides: going beyond crystal structures Yaroslav Filinchuk Dmitry Chernyshov Vladimir Dmitriev ESRF
Intro to Chemical Bonding
Emergent phenomena at oxide interfaces Chen Ke, Liu Donghao, Lv Peng, Shen Bingran, Yan Qirui, Yang Wuhao, Ye Qijun, Zhu Chenji Nov. 19 th.
Electronic structure of La2-xSrxCuO4 calculated by the
Martin Lees Magnetic ordering in Ca 3 Co 2 O 6 Introduction: Why is Ca 3 Co 2 O 6 interesting? Zero field magnetic order and ordering in high field: Magnetization.
Ions and Ionic Bonding 7.1, 7.2, 9.1, 9.2.
15. Energy Applications I: Batteries. What are Batteries, Fuel Cells, and Supercapacitors, Chem Rev, 2004, 104, 4245, Martin Winter and Ralph J. Brodd.
IV. Electronic Structure and Chemical Bonding J.K. Burdett, Chemical Bonding in Solids Experimental Aspects (a) Electrical Conductivity – (thermal or optical)
Magnetic transition in the Kondo lattice system CeRhSn2
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Categories Granville Central High School Physical Science Atoms Review Fall 2012.
Vocabulary Chemical Bond –a–a–a–attractive force between atoms or ions that binds them together as a unit –b–b–b–bonds form in order to… iiiincrease.
Chapter 7 Ionic & Metallic Bonding Anything in black letters = write it in your notes (‘knowts’)
Metals, Nonmetals, Metalloids. Metals and Nonmetals Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca.
High-pressure synthesis of new oxide Dy 2 Ge 2 O 7 and high-pressure study on crystal and magnetic structures of the perovskite LaCrO 3 John B. Goodenough,
Magnetic, Transport and Thermal Properties of La 0.67 Pb 0.33 (Mn 1-x Co x )O y M. MIHALIK, V. KAVEČANSKÝ, S. MAŤAŠ, M. ZENTKOVÁ Institute of Experimental.
Electrical conduction property of solid iodine in the molecular phase Shimizu Group Yu TANAKA.
Composition dependent properties of Ni 2 MnGa based ferromagnetic shape memory alloys Qing-Miao Hu Institute of Metal Research, Chinese Academy of Sciences.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
K. Miyano and N. Takubo RCAST, U. of Tokyo Bidirectional optical phase control between a charge-ordered insulator and a metal in manganite thin films What.
APPLICATION OF AN EXPLOSION FOR OBTAINING MAGNESIUM DIBORIDE: AMORPHOUS AND CRYSTALLINE PHASES a V.I.Mali, b O.I.Lomovskii, b G.V.Golubkova, c L.S.Dovlitova,
An Introduction to Fe-based superconductors
¶ CNISM-Dipartimento di Fisica “A. Volta,” Università di Pavia, Pavia, (Italy) ║ Max Planck Institute for Chemical Physics of Solids, Dresden,
UEQ: How does the structure of matter influence its physical and chemical behavior?
Thermodynamic stability of VO2 in contact with thin metal films
High Pressure study of Bromine Shimizu Lab M2 Hayashi Yuma.
High Pressure study of Bromine
Phase diagram of solid oxygen at low temperature and high pressure
The Periodic Table of the Elements
H. Giefers, Universität Paderborn Einleitung Hochdruck-Kristallographie und Synthese 28. August 2003 Reaktionskinetik der Disproportionierung von SnO unter.
Starter S-53 Mole Day!. Starter S-55 What is the value of a mole? What is that number used for?
Superconductivity in HgBa 2 Ca m-1 Cu m O 2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures L. Gao et al., Phys. Rev. B 50, 4260 (1994) C. Ambrosch-Draxl.
Unit 3: Ionic Bonding, Naming & Metallic Bonding.
Structural Determination of Solid SiH 4 at High Pressure Russell J. Hemley (Carnegie Institution of Washington) DMR The hydrogen-rich solids are.
Chapter 8 IONIC COMPOUNDS.
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
Synthesis and Properties of Magnetic Ceramic Nanoparticles Monica Sorescu, Duquesne University, DMR Outcome Researchers at Duquesne University.
Ionic Compounds. * Chemical Bond * Cation * Anion * Ionic Bond * Electrolyte * Formula Unit.
4.1 Ionic Bonding & Structure
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
Flashcards for Ionic & Metallic Bonding. What particle is transferred in ionic bonding? Electron.
Brookhaven Science Associates U.S. Department of Energy Chi-Chang Kao National Synchrotron Light Source Brookhaven National Laboratory Recent Developments.
Reactions of Metals. Reactions of Metals with H 2 O The metal is the anode and will be oxidized. 2H 2 O + 2e-  2OH - + H 2 E° = V Mg  Mg 2+ +
What are Compounds? Compound: combination of two or more atoms held together by a chemical bond.
Bonds involve the Valence Electrons a)Valence electrons = only outer energy level electrons b)Atoms want a full outer energy level like the Noble gas.
Overview of 133/219 class Condensed Matter/Materials Science Laboratory TA : Sooyoung Jang Inho Jeon Welcome to 133/219 class.
Phase Diagram of Ruthenate: Ca2-xSrxRuO4 (CSRO) (0. 0<x<2
Chapter 1 Interactions of Matter
Naming Ionic Compounds Writing Ionic Formulas
Ionic Compounds and Metals
Ionic Compounds.
Warm-Up 10/17/2016 Place the following elements in increasing electronegativity and increasing atomic size K, Br, Fe, Cs, Se.
Ions and Ionic Bonding.
Ionic Compounds.
Ionic and Metallic Bonding
Ch 5 Ions and Ionic Compounds
Ionic Compounds and Metals
Ionic Compounds and Metals
Chapter 7 Ionic and Metallic Bonding
Pressure-induced spin-state and insulator-metal transition in Sr2CoO3F by first principles Xue-dong Ou and Hua Wu We have studied the electronic structure.
Properties, Writing Chemical Formulas & Naming Ionic Compounds
Starter S-53 Mole Day!.
Ionic Bonding.
Chemistry at extreme conditions: Fe-O system at ultra-high pressure
Presentation transcript:

Mixed-valence vanadates at high-pressures Andrzej Grzechnik Institute of Crystallography, RWTH Aachen University

P.Y. Zavalij and M.S. Whittingham, Acta Cryst. B55, 627 (1999) Vanadium coordination polyhedra in vanadates in relation to the oxidation states of vanadium at atmospheric pressure

Vanadium coordination polyhedra in vanadates in relation to the oxidation states of vanadium at atmospheric pressure Electrochemistry ► Electrochemistry Catalysis ► Catalysis Correlated electron systems ► Correlated electron systems Spin-Peierls transitions Spin gap formation Charge, spin & orbital ordering Metal-insulator transitions Magnetism ► Magnetism P.Y. Zavalij and M.S. Whittingham, Acta Cryst. B55, 627 (1999)

Wadsley phases: V n O 2n+1 (n = 3, 4, 6) the VO 2 – V 2 O 5 system VO 2 (P4 2 /mnm) V 2 O 5 (Pmmn) Binary vanadium oxides Rutile type

Wadsley phases: V n O 2n+1 (n = 3, 4, 6) the VO 2 – V 2 O 5 system VO 2 (P4 2 /mnm) V 2 O 5 (Pmmn) V 3 O 7 (C2/c) n = 3 Binary vanadium oxides Rutile type An insulator and a uniaxial ferromagnet: H. Nishihara, Y. Ueda, K. Kosuge, H. Yasuoka, S. Kachi, J. Phys. Soc. Jpn. 47, 790 (1979).

Wadsley phases: V n O 2n+1 (n = 3, 4, 6) the VO 2 – V 2 O 5 system VO 2 (P4 2 /mnm) V 2 O 5 (Pmmn) V 4 O 9 (Pnma) n = 4 Binary vanadium oxides Rutile type An antiferromagnet: S. Yamazaki, C. Li, K. Ohoyama, M. Nishi, M. Ichihara, H. Ueda, Y. Ueda, J. Solid State Chem. 183, 1496 (2010).

Wadsley phases: V n O 2n+1 (n = 3, 4, 6) the VO 2 – V 2 O 5 system VO 2 (P4 2 /mnm) V 2 O 5 (Pmmn) V 6 O 13 (Pnma) n = 6 Binary vanadium oxides Rutile type A metal-insulator phase transition followed by an antiferromagnetic transition: Y. Ueda, K. Kosuge, S. Kachi, Mater. Res. Bull. 11, 293 (1976).

Magnéli phases: V n O 2n-1 (n = 3÷9) the V 2 O 3 – VO 2 system V 2 O 3 (R-3c) VO 2 (P4 2 /mnm) V 8 O 15 (P-1) V 3 O 5 (Cc) Binary vanadium oxides Rutile type Corundum type

Vanadium coordination polyhedra in vanadates in relation to the oxidation states of vanadium at high pressures?

Vanadium coordination polyhedra in vanadates in relation to the oxidation states of vanadium at high pressures P An interplay of the effects of a chemical composition and of high pressure on the structural stability and physical properties of mixed valence vanadates

Ca 3 V 2 O 8 at high pressures palmierite type R3c

palmierite type R3c Ca 3 V 2 O 8 at high pressures A. Grzechnik, Chem. Mater. 10, 1034 (1998) A. Grzechnik, J. Solid State Chem. 139, 161 (1998) Onset of amorphization at about 10 GPa

HP-HT synthesis of a powder material 11 GPa, 1373 K C2/m A. Grzechnik, Solid State Sciences 4, 523 (2002) Ca 3 V 2 O 8 at high pressures palmierite type R3c

V 2 O 5 and A x V 2 O 5 (A = Li, Na, Cs, Ag, Mg, Ca, …; x ≤ 1) V 2 O 5 (Pmmn)NaV 2 O 5 (Pmmn)

 -Na 0.33 V 2 O 5 (C2/m) Wadsley-type bronze NaV 2 O 5 (Pmmn) V 2 O 5 and A x V 2 O 5 (A = Li, Na, Cs, Ag, Mg, Ca, …; x ≤ 1)

T. Yamauchi, Y. Ueda, N. Môri, Phys. Rev. Lett. 89, (2002) Pressure-induced superconductivity in  -Na 0.33 V 2 O 5 : T SC = 8 K, P = 8 GPa Phase transition from the charge ordered to the superconducting phase at 8 K and 8 GPa?

Local structures in high-pressure phases of V 2 O 5 A. Grzechnik, Chem. Mater. 10, 2507 (1998) I. Loa, A. Grzechnik, U. Schwarz, K. Syassen, M. Hanfland, R.K. Kremer, J. Alloys Comp. 317–318, 103 (2001)

High-pressure phases of V 2 O 5 and NaV 2 O 5 from powder diffraction? A. Grzechnik, Chem. Mater. 10, 2507 (1998) I. Loa, A. Grzechnik, U. Schwarz, K. Syassen, M. Hanfland, R.K. Kremer, J. Alloys Comp. 317–318, 103 (2001)

High-pressure phases of  -Na 0.33 V 2 O 5 from powder diffraction? High-pressure synchrotron powder diffraction at room temperature K. Rabia, A. Pashkin, S. Frank, G. Obermeier, S. Horn, M. Hanfland, C.A. Kuntscher, High Press. Res. 29, 504 (2009)

(NH 4 ) 2 V 3 O 8 fresnoite V 4+ V 5+ Ambient pressure 6.90 GPa P4bm Synchrotron single-crystal diffraction (D3/Hasylab) A. Grzechnik, T.Z. Ren, J.M. Posse, K. Friese, Dalton Trans. 40, 4572 (2011)

(NH 4 ) 2 V 3 O 8 fresnoite Ambient Ambient pressure 6.90 GPa V 4+ V 5+ No charge transfer P4bmP4/mbm Synchrotron single-crystal diffraction (D3/Hasylab) A. Grzechnik, T.Z. Ren, J.M. Posse, K. Friese, Dalton Trans. 40, 4572 (2011)

MV 6 O 11 compounds (M = Na, K, Sr, Ba, Pb) P6 3 /mmc M + V 3 3+ V 3 4+ O 11 or M 2+ V 4 3+ V 2 4+ O 11 Structures related to magnetoplumbite Pb(Fe 3+,Mn 3+ ) 12 O 19 V(1)O 6 V(2)O 6 V(3)O 5 regular Kagomé lattice V(1)O 6 M NaV 6 O 11 : A. Grzechnik, Y. Kanke, K. Friese, J. Phys.: Condens. Matter 20, (2008) BaV 6 O 11 : K. Friese, Y. Kanke, A. Grzechnik, Acta Cryst. B65, 326 (2009)

Phase transitions in NaV 6 O 11 : low T V 3+ (1)O 6 V 4+ (2)O 6 V 4+ (3)O 5 Spontaneous magnetization with the easy axis II to [001] ► A Curie-Weiss paramagnetic metal at ambient conditions ► Spontaneous magnetization is suppressed at high pressures (T c ↓ P↑) while the T H temperature increases on compression (*) and is expected to be at 1.15 GPa and room T (*) T. Naka, T. Matsumoto, Y. Kanke, K. Murata, Physica B 206/207, 853 (1995) 64.2 K 80 K T H = 243 K Na +  ║║

Phase transitions in BaV 6 O 11 : low T Single-crystal growth at 6 GPa and K Yasushi Kanke (NIMS, Tsukuba) V(1)O 6 V(2)O 6 Ba 2+ V(3)O 5

V(1)O 6 V(2)O 6 Ba 2+ P6 3 mc ↔ P6 3 /mmc 250 K 115 K 75 K Specific heat V(3)O 5 Phase transitions in BaV 6 O 11 : low T Single-crystal growth at 6 GPa and K Yasushi Kanke (NIMS, Tsukuba)

P6 3 mc ↔ P6 3 /mmc 250 K 115 K 75 K No structural phase transitions (no Cmc2 1 phase) Specific heat V(1)O 6 V(2)O 6 Ba 2+ V(3)O 5 Phase transitions in BaV 6 O 11 : low T Single-crystal growth at 6 GPa and K Yasushi Kanke (NIMS, Tsukuba)

P6 3 mc ↔ P6 3 /mmc 250 K 75 K Specific heat 115 K 75 K Magnetic susceptibility Phase transitions in BaV 6 O 11 : low T Single-crystal growth at 6 GPa and K Yasushi Kanke (NIMS, Tsukuba) No structural phase transitions (no Cmc2 1 phase)

Phase transitions in NaV 6 O 11 and BaV 6 O 11 : breaking the Kagomé lattice

NaV 6 O 11

290 K V(1) V(2) 2.86 Å Phase transitions in NaV 6 O 11 and BaV 6 O 11 : breaking the Kagomé lattice NaV 6 O 11

290 K V(1) V(2) 85.5 K 2.72 Å2.99 Å 2.86 Å Phase transitions in NaV 6 O 11 and BaV 6 O 11 : breaking the Kagomé lattice NaV 6 O 11

290 K V(1) V(2) 85.5 K4.2 GPa 2.66 Å3.01 Å 2.86 Å 2.72 Å2.99 Å Phase transitions in NaV 6 O 11 and BaV 6 O 11 : breaking the Kagomé lattice NaV 6 O 11

Phase transitions in NaV 6 O 11 and BaV 6 O 11 : breaking the Kagomé lattice NaV 6 O 11 BaV 6 O 11

Phase transitions in NaV 6 O 11 and BaV 6 O 11 : breaking the Kagomé lattice V(1)O 6 V(2)O 6 V(3)O 5 M NaV 6 O 11 Hardly any bond valence changes at V sites BaV 6 O 11 Bond valence changes at all V sites Charge transfer

Mixed-valence vanadates MV 4 O 8 (M = Y, Yb, Lu) 3V V 4+ K. Friese, Y. Kanke, A.N. Fitch, A. Grzechnik, Chem. Mater. 19, 4882 (2007) K. Friese, Y. Kanke, A.N. Fitch, W. Morgenroth, A. Grzechnik, Acta Cryst. B64, 652 (2008)

↓a↓a →b→b ↓c↓c Calcium ferrite type structure (CaFe 2 O 4 ) Orthorhombic Pnam a= Å b= Å c= Å Fe(1)O 6 Fe(2)O 6 Ca Pnam (Z = 4) a = Å b = Å c = Å →b→b

V(1)O 6 V(3)O 6 V(2)O 6 V(4)O 6 Yb ↓a↓a →b→b P /n 1 (Z = 4) a = (3) Å b = (4) Å c = (1) Å  = (3)°  -YbV 4 O 8 ↓c↓c →b→b

A 2 1 /d 1 1 (Z = 8) a = 9.030(5) Å b = 21.44(3) Å c = 5.752(2) Å  = (3)° β-YbV 4 O 8 ↓a↓a →b→b ↓c↓c V(1)O 6 V(3)O 6 V(2)O 6 V(4)O 6 Yb →b→b

Average structure P12 1 /n1 A2 1 /d11 Pnam α-phase β-phase Polytypism, twinning, and composite crystals in MV 4 O 8 (M = Y, Yb, Lu)

Phase transitions in MV 4 O 8 (M = Y, Yb, Lu) at low temperatures  -YV 4 O 8  -YV 4 O 8 ( ,  )-YV 4 O 8 Q Magnetic susceptibility Specific heat Domain size effects:  ≈ Å,  ≈ 500 Å

A2 1 /d11 (Z = 4) β-Phase A2 1 /d11 (Z = 4) β’-Phase K Guinier simulation of synchrotron powder diffraction data for  -YbV  O  ID31/ESRF

α-phase β-phase Isostructural phase transitions in  -YbV 4 O 8 and  -YbV 4 O 8 due to charge ordering at low temperatures (single-crystal data from ANKA & DESY) te Temperature [K]

High-pressure behaviour of  -YbV 4 O 8 and  -YbV 4 O 8 polytypes? P12 1 /n1, Z =4A2 1 /d11, Z =8

High-pressure behaviour of  -YbV 4 O 8 and  -YbV 4 O 8 polytypes?  -YbV 4 O 8 seems to be stable at least to 16 GPa  -YbV 4 O 8 seems to be stable at least to 10 GPa P12 1 /n1, Z =4A2 1 /d11, Z =8 (0.3 mm capillary) ID31/ESRF (0.3 mm capillary) ID31/ESRF (DAC) SNBL/ESRF, PETRA III (DAC) SNBL/ESRF, PETRA III

► In situ high-pressure x-ray studies (diamond anvil cells and multi-anvils) Phase transitions P-T phase diagrams Chemical reactions ► High-pressure synthesis ► Physical properties under high pressures Magnetism Transport properties The future: an interplay of the effects of a chemical composition and of high pressure on the structural stability and physical properties and of high pressure on the structural stability and physical properties of mixed valence vanadates

Collaborators Karen Friese (JCNS, Jülich) Yasushi Kanke (NIMS, Tsukuba) Oleg Petracic (JCNS, Jülich) Georg Roth (RWTH Aachen University)