Physical Quantities Definition, Types, Symbols and Units. www.thecartech.com.

Slides:



Advertisements
Similar presentations
Mechanics and properties of matter
Advertisements

Context and definition
Unit Systems Conversions Powers of 10 Physical Quantities Dimensions
Rotational Dynamics Chapter 9.
Nature of Science Metric System-International System of Units (SI)
Physics Physics is the study of the laws of nature that govern the behaviour of the universe, from the very smallest scales of sub-atomic particles to.
1 The Metric System Mr. ShieldsRegents Chemistry U00 L03.
COS 12.0 IDENTIFY METRIC UNITS FOR MASS, DISTANCE, TIME, TEMPERATURE, VELOCITY, ACCELERATION, DENSITY, FORCE, ENERGY & POWER.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Unit 2 Metrics.
2.1 Measurement Systems Measurement is the determination of the dimensions, capacity, quantity, or extent of something. Copyright © Houghton Mifflin Company.
Physical Properties: Melting Temperature Boiling Temperature Color
You may correct a low quiz score to an 85%
MATTER– Anything that has MASS and VOLUME.
Measurements Any measured value consists of two parts:
1 Standards for Measurement. 2 Mass and Weight 3 Matter: Anything that has mass and occupies space. Mass : The quantity or amount of matter that an object.
Chemistry: The Study of Change Chapter 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Introduction and Vectors
E Construction Surveying HYDRAULICS. Introduction surveyors –usually not be directly involved in the design of hydraulics systems –most certainly.
Units of Measurement Many properties of matter are quantitative, they are associated with numbers Always specify units when expressing a measured quantity.
Chapter 10 Rotation of a Rigid Object about a Fixed Axis.
Kinetic Molecular Theory of Matter
Chapter 2 Standards of Measurement Objectives:  Understand Mass and Weight (2.1)  Identify the metric units of measurement (2.6)  Explain what causes.
JJ205 ENGINEERING MECHANICS COURSE LEARNING OUTCOMES : Upon completion of this course, students should be able to: CLO 1. apply the principles of statics.
Measurement The International System of Units (SI) is the standard system used around the world.
Measurement The International System of Units (SI) is the standard system used around the world.
SI Units Of Measurements
Units, Standards, SI System
Do Now: Accuracy & Precision Draw two bullseyes. On one, show three darts that are accurate. On the other, show three darts that are precise.
* INTRODUCTION Physical quantities Base quantities Derived quantities Prefixes Scientific notation (standard form Scalar quantities Vector quantities Dimensional.
Measurements and Calculations
Thermodynamics. Thermodynamics is the branch of Physics that deals with the conversion of heat into other forms of energy, or other forms of energy into.
Metric System International System of Units (SI).
Measurements in Physics
Chapter 10 Rotational Motion.
Physics for Scientists and Engineers Introduction and Chapter 1 – Physics and Measurements.
Systems of Measurement
Updated Aug 2006Created by C. Ippolito August 2006 Measurement Objectives: list three requirements for making a measurement express measurements in the.
Course 2 – Mathematical Tools and Unit Conversion Used in Thermodynamic Problem Solving.
Introduction to Environmental Engineering Dr. Kagan ERYURUK.
Circular Motion and Other Applications of Newton’s Laws
M602 Review Questions. Unit 1 1. What do we call the time rate at which velocity changes?
R. Field 8/27/2013 University of Florida PHY 2053Page 1 The International System of Units Three Basic Units (SI) QuantityUnit NameSymbol Lengthmeterm Timeseconds.
Catalyst If I wanted to accurately measure 150 mL of potassium chloride solution, what measuring device would I use?
Preview Lesson Starter Objectives Units of Measurement SI Measurement SI Base Units Derived SI Units Conversion Factors Chapter 2 Section 2 Units of Measurement.
1. Any data or value is expressed in terms of a number [quantity] and a unit [describing the type of measurement] Meet me in 5…. 5 minutes? 5 weeks?5.
1cm Sand Meter Stick BalanceSpring ScaleGraduated Cylinder Mass/Volume The SI system It is a group of units used by scientists to measure length, mass,
Physics 2 (PHY 125) Classical Mechanics Dr Manjunatha S.
3.2 Units of Measurement > 1 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. Chapter 3 Scientific Measurement 3.1 Using and.
Vectors Chapter 3 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
SI System International System of Units Taking Measurements.
Unit 1 C Work Energy Power. Forms of Energy Mechanical Mechanical focus for now focus for now chemical chemical electromagnetic electromagnetic nuclear.
Chapter 1 The Nature of Science.
Chapter 2 Measurement.
Systems of Measurement
Types of quantities There are 2 categories of Measurable quantities to which all other things belong. They may be either, fundamental quantities which.
Units, Standards, SI System
Scientific Measurement
Systems of Measurement
Unit Systems and Dimensional Analysis
Static and Dynamic Chapter 1 : Introduction
Warm Up:.
MEASURING.
Units of Measurement.
Lesson Vocabulary Energy - power derived from the utilization of physical or chemical resources, especially to provide light and heat or to work machines.
Section 2 Units of Measurement
Types of quantities There are 2 categories of Measurable quantities to which all other things belong. They may be either, fundamental quantities which.
Chapter Two: Introduction to Engineering Calculations
The Scientific Method.
Presentation transcript:

Physical Quantities Definition, Types, Symbols and Units.

Definitions of Physical Quantities A physical quantity is a physical property that can be quantified by measurement.

Types of physical quantities Scalar quantities are quantities that have magnitude only; they are independent of direction. (time, temperature, mass, density, energy,…) Vector quantities are quantities that have magnitude and direction. (displacement, velocity, moment, force, ….)

Symbols for physical quantities Usually, the symbols for physical quantities are chosen to be a single letter of the Latin or Greek alphabet, and are often printed in italic type (F, t, m, ……). Often, the symbols are modified by subscripts and superscripts, to specify what they refer to - for instance E k is usually used to denote kinetic energy and c p heat capacity at constant pressure.

Physical Quantities

Vector presentation When vectors are written, they are represented by a single letter in bold type or with an arrow above the letter, such as or. Some examples of vectors are displacement (e.g. 120 cm at 30°) and velocity (e.g. 12 meters per second north). The only basic SI unit that is a vector is the meter. All others are scalars. Derived quantities can be vector or scalar, but every vector quantity must involve meters in its definition and unit.

Vector notation Vectors are distinguished from scalars by writing them in special ways. A widely used convention is to denote a vector quantity in bold type, such as A, and that is the convention that will be used. you may also encounter the notation Ū or ḛ. The magnitude of a vector A is written as |A|.

Representation of vectors in Cartesian coordinates The vector can be represented by its components (magnitude)in (x,y,z) directions. The direction of the vector can be represented by a unit vector u = i + j + k, so: v = v x i + v y j + v z k where the units can be anything

Representation of vectors in Cartesian coordinates (cont.) F = F x i + F y j + k Where: F x = F cos α F y = F cos β F z = F cos γ α, β and γ are the angles the force vector (F) making with x, y and z axis respectively. And F = √ F x 2 + F y 2 + F z 2

Vector Mathematical Operation (adding, subtracting, multiplying..) you have to consider both the magnitude and the direction.

Vectors Addition Adding two vectors in Cartesian form v 1 and v 2 v 3 = v 1 + v 2 v 3 = (v x1 i + v y1 j + v z1 k) +(v x2 i + v y2 j + v z2 k) v 3 = (v x1 + v x2 ) i + (v y1 + v y2 ) j + (v z1 + v z2 ) k That is, the components of a sum are the sums of the components.

Units of physical quantities Most physical quantities Q include a unit. Neither the name of a physical quantity, nor the symbol used to denote it, implies a particular choice of unit.

Systems of Units The Imperial units or the Imperial system is a collection of English units, first defined in the Weights and Measures Act of 1824, later refined (until 1959) and reduced. The units were introduced in the United Kingdom and its colonies, including Commonwealth countries, but excluding the then already independent United States. The United States customary system (also called American system or, more rarely, "English units") is the most commonly used system of measurement in the United States. It is similar but not identical to the British Imperial units.

Systems of Units (cont.) The most widely used system of units and measures around the world is the Systeme International d'Unites (SI), the modern form of the metric system. This originated in France, where in 1790 the French Academy of Science was commissioned to design a new system of units (the International System of Unit).

International system of units (SI) Basic units: Physical quantitySI unitUnit symbol Lengthmeterm Masskilogramkg Timeseconds Electric currentampereA Degree of temperaturekelvinK Amount of substancemole Light (luminous) intensitycandelacd

International system of units (SI) (cont.) Associated with basic units are a variety of supplementary derived units. Derived units: Derived quantitySI unitUnit symbol Areasquare meterm2m2 Volumecubic meterm3m3 Velocitymeter per secondm/s Accelerationmeter per second squarem/s 2 DensityKilogram per cubic meterKg/m 3

International system of units (SI) (cont.) Derived units with special names and symbol: Physical quantitySI unitUnit symbol Force, WeightnewtonN = kg m/s 2 Work, Energy, Quantity of HeatjouleJ = N m PowerwattW = N m/s = J/s Pressure, StresspascalPa = N/m 2 Electric chargecoulombC = A s Electric potentialvoltV = W/A Electric capacitancefradF = A s/V Electric resistanceohm Ω = V/A FrequencyhertzHz = s -1

International system of units (SI) (cont.) In the International system of unit, a unit is chosen for a particular purpose and larger and smaller are obtained by applying a prefix to this unit and multiplying or dividing by 10 or power of 10. Larger units, obtained by multiplying by 1000, etc., are called ‘multiples’, smaller units, obtained by multiplying by 0.1, etc. are termed ‘sub-muliplies.

International system of units (SI) (cont.) Multiplying factors: FactorPrefixSymbol [10 9 ]gigaG [10 6 ]megaM [10 3 ]kilok 100 [10 2 ]hectoh 10 [10]decada 0.1 [10 -1 ]decid 0.01 [10 -2 ]centic [10 -3 ]milim [10 -6 ]micro μ

International system of units (SI) (cont.) Units outside the SI that accepted for use with the SI: Derived quantityUnit symbolValue Minutemin1 min = 60 s Hourh1 h = 60 min = 60 s Dayday1 day = 24 h = s Degree angle o 1 o = ( π/180) rad Literl, (L)1 L = 1 dm 3 = 1000 cm 3 = m 3 Metric ton (tonne)t1 t = 1000 kg

International system of units (SI) (cont.) Other units outside the SI that are currently accepted for use with the SI: Derived quantityUnit symbolValue Nautical mile 1 nautical mile = 1852 m Knot 1 knot = km/h Hectareha1 ha = 1 hm 2 = 10 4 m 2 Barbar1 bar = 0.1 MPa = 100 kPa = 10 5 Pa

SI unit rules and style conventions Unit symbols are placed after the numerical value, leaving a space between the value and symbol. e.g. 5 V not 5V. Only one prefix can be applied to a unit at a time. e.g kilonewton must not express 1kilokilonewton but as 1 meganewton, (1000 kN ≠ 1 kkN = 1 MN). The correct use of upper and lower case letters (capital and small letters) is important. i.e. m- meter; but M- mega; k- kilo; K- kelvin. Symbols must not made plural by adding ‘s’ since ‘s’ is symbol of second. e.g. 10 kg not 10 kgs.

SI unit rules and style conventions (cont.) When a prefix is attached to a unit there should be no space between the prefix and the unit; i.e. mm- millimeter, kW- kilowatt… etc. When a complex unit is formed by multiplying two units together, however, the symbol should be separated by a space; e.g. N m- newton meter (the unit of torque). Abbreviations such as sec, cc, or mps are avoided and only standard unit symbols, prefix symbols, unit names, and prefix names are used (s, cm 3, m/s).

SI unit rules and style conventions (cont.) Unit symbols are generally written in lower case letters, except when the name of the unit is derived from a proper name. (Note that the name of a unit which is derived from a proper name is written out in full, such as ampere or hertz, the name is not capitalized. The only exception to this is Celsius).

Dimensional analysis Technique used in the physical and engineering to reduce physical properties such as acceleration, velocity, energy and others to their fundamental dimensions of length(L), mass (M), and time (T). This technique facilitate the study of interrelationships of systems (or models of systems) and their properties. Acceleration, for example, is expressed as length per unit of time squared (LT -2 ); whether the units of length in the English or the metric system is immaterial.

Physical quantities: Time Time (t) The fundamental unit of time suggested by SI system is the second, since 1967 defined as the second of international Atomic Time, based on the radiation emitted by a Caesium-133 atom in the ground state. Based on the second as base unit, the following units are in use: minute (1 min) = 60 s hour (1h) = 60 min = 3.6 ks Julian day (1 day) = 24 h = 86.4 ks

Physical quantities: Displacement, Area & Volume Displacement and distance (L) Displacement is measured as meters (m), or sometimes more conveniently as kilometers, millimeters or centimeters. Distance (scalar) is the magnitude of the displacement (vector). Area (A) Any flat, curved, or irregular expanse of a surface. It is measured in meter square (m 2 ). Volume (V) The volume of any solid, liquid, gas, plasma, or vacuum is how much three-dimensional space it occupies, often quantified numerically. It is measured in cubic meter (m 3 ) or liter (l). 1 l = 1000 cm 3 = m 3

Physical quantities: Angle Angle (θ) Angle is the figure formed by two rays sharing a common endpoint, called the vertex of the angle. The magnitude of the angle is the "amount of rotation" that separates the two rays, and can be measured by considering the length of circular arc swept out when one ray is rotated about the vertex to coincide with the other. The degree and the radian are by far the most common. The turn (or full circle, revolution, rotation, or cycle) is one full circle. 1 turn = 360° = 2π (rad)

Physical quantities: Linear & Angular Velocities Velocity (v) and speed Velocity is measured as meters per second (m/s), or sometimes more conveniently as kilometers per hour (km/h). Useful conversions are m/s = 3.6 km/h, and m/s = 1 km/h). The speed is the magnitude of the velocity vector. Angular velocity (ω) Angular velocity is a measure of the angular displacement per unit time. The angular velocity can be measured in revolution per minute (rpm). ω = 2 π N/60 Where: N = revolution per minute (rpm)

Physical quantities: Angular & Linear Velocity Angular and linear velocity The linear velocity of a particle is related to angular velocity by : v = ω r v = (2 π N/60) r

Physical quantities: Linear Acceleration Acceleration (a) Acceleration or deceleration is the rate of change of speed. It is measured as meters per second per second or m/s 2. If the speed increases from u m/s (initial velocity) to v m/s (final velocity) during t seconds (time), then the average acceleration a m/s 2 is given by a = (v-u)/t m/s 2 Acceleration due to gravity (g) In physics, gravitational acceleration is the acceleration on an object caused by gravity, a conventional standard value of exactly m/s 2 (g = 9.81 m/s 2 ) * Car acceleration and deceleration indication Another way to indicate the car acceleration is the time taken by the car form 0 velocity to reach 100 km/h, or (0- 60 mph). * A convenient way to measure braking action is to equate (compare) vehicle deceleration to the gravity acceleration constant [g]. Example: declaration = 0.3 g.

Physical quantities: Angular acceleration Angular acceleration (α) Angular acceleration is the rate of change of angular velocity over time. In SI units, it is measured in radians per second squared (rad/s 2 ).

Physical quantities: Mass & Weight Mass (m) and weight (w) A 'body' contains a certain amount of stuff or matter called mass (m). The unit of mass is the kilogram (kg).The pull of earth -the force of gravity- acting on this mass is the weight (w)of the body. The unit of weight is the newton (N). w = mg Where: g is the acceleration of falling body due to gravity in meter per second square (m/s 2 ).

Physical quantities: Mass moment of inertia Mass moment of inertia (I): In classical mechanics, moment of inertia, also called mass moment of inertia, rotational inertia, or the angular mass, (SI units kg m 2 ), is a measures of an object’s resistance to changes to its rotation. I = ∫ r 2 dm Where: m is the mass, r is the perpendicular distance to the axis of rotation.

Physical quantities: Density Density (ρ) Density is the mass of a substance per unit volume (kg/m3). The density of water is, for practical purposes, 1000 kg/m 3 or 1 kg/l. (The litre (l) is m 3.) The density of solids and liquids are usually stated in g/cm 3, while gases are usually in kg/m 3. Relative density or specific gravity relative density of the substance = (mass of a substance / mass of an equal volume of water) This ratio is called the relative density of the substance, and represents how many times it is heavier or lighter than the same volume of water. Note that relative density has no units. Example of substances relative densities (oxygen = , steel=8.0, lead =11.4, mercury = 13.6).

Physical quantities: Force Force (F) The force is a measurable influence tending to cause movement of body (its intensity). The unit of force is newton, 1 newton is the value of a force which if exerted upon a mass (m) of one kilogram gives it an acceleration (a) of 1 m/s 2. F = m a, 1 N = (1 kg) (1 m/s 2 ) = 1 kg m/s 2 There are different types of forces; external force, internal force, friction force, inertia force and reaction force.

Physical quantities: Pressure Pressure (p) Pressure is the force per unit area; the unit is N/m 2 or the Pascal (Pa). Larger practical units are kN/m 2 (kPa) and MN/m 2 (MPa). Note that 1 MN/m 2 (MPa) = 1N/mm 2 A pressure of 7 MPa means that each mm 2 subject to the pressure has a force of 7 N acting on it, and the total force on the surface will be the product of the pressure and the area. Atmospheric pressure Air has weight. The atmosphere above the earth produces a pressure at sea level of approximately 1 bar, where 1 bar = 105 N/m 2 or 105 Pa. Standard atmospheric pressure (atm) is bar. 1 atm = 760 mm Hg (Torr) (mercury column) = mm H 2 O (water column) Gauge and absolute pressure The ordinary pressure gauge gives readings measured above atmospheric pressure. To obtain the absolute pressure, that is the pressure measured above a perfect vacuum, atmospheric pressure must be added to the gauge reading: absolute pressure = gauge pressure + atmospheric pressure

Physical quantities: Torque Torque (T) When a force (F) acts on a body pivoted on a fixed axis, the product of the force perpendicular to the radius, and the radius at (r) which it acts, is termed the turning moment of the force or torque. Torque (T) is measured in newton meters (N m). T = F r

Physical quantities: Work & Power Work (W) Work is done when a force overcomes resistance and causes movement. Work is measured by the product of the force (f) and the distance moved (s) in the direction of the force, the unit being the joule (J): W = F s If the force causes no movement, then no work is done, or if the force in the apposite direction of the movement, then the work is negative. Power (P) Power is the rate of doing work. The unit, the watt, is a rate of working of 1 joule per second (1 J/s) power = work done per second = [W / t] {N m /s}, {J/s}, (W) The relation between power and torque: If a tangential force is applied to a shaft, then the work done per one revolution is: W = F s = F (2 π r) = (2 π) T Since the power is P = W/t = (2 π / t) T, then: P = ωT, P = (2 π N/60) T Using these formulae, the power can be calculated from the torque and speed of a shaft.

Physical quantities: Temperature Temperature (t) Temperature is a physical property of matter that quantitatively expresses the common notions of hot and cold. Quantitatively, temperature is measured with thermometers. The International System of Units (SI) defines a scale and unit for the thermodynamic temperature by using the kelvin temperature. The unit symbol of the kelvin is K. While the Kelvin scale is the principal temperature scale for use in science and engineering, much of the world uses the Celsius scale (°C) for most temperature measurements. 1 K = 1°C = 1.8 °F = 1.8 °R

Physical quantities: Energy Energy (E) In all such energy transformation processes, the total energy remains the same. Energy may not be created nor destroyed. Any form of energy can be transformed into another form. When energy is in a form other than heat, it may be transformed with good or even perfect efficiency, to any other type of energy. Measurement of energy in the SI unit is the joule. In addition to the joule, other units of energy include the kilowatt hour (kW h) and the British thermal unit (Btu). These are both larger units of energy. One kW h is equivalent to exactly 3.6 million joules, and one Btu is equivalent to about 1055 joules. There are different types of energies; kinetic, potential, mechanical, thermal, chemical, electric and nuclear energy.