Solid state physics N. Witkowski.

Slides:



Advertisements
Similar presentations
INTRODUCTION TO CERAMIC MINERALS
Advertisements

EEE Electrical Properties of Materials
Crystallography, Crystal Symmetry, and Crystal Systems
Semiconductor Device Physics
Principles of Computer-Aided Design and Manufacturing Second Edition 2004 ISBN Author: Prof. Farid. Amirouche University of Illinois-Chicago.
Em. Pr. Charles Kappenstein LACCO, Laboratoire de Catalyse en Chimie Organique, Poitiers, France POWDER X-RAY DIFFRACTION I – CRISTALLOGRAPHY.
Fundamental Concepts Crystalline: Repeating/periodic array of atoms; each atom bonds to nearest neighbor atoms. Crystalline structure: Results in a lattice.
Why Study Solid State Physics?
Solid State Physics (1) Phys3710
Introductory remarks What characterizes the solid state? States of matter Plasma Physics and Chemistry of Solids.
II. Crystal Structure Lattice, Basis, and the Unit Cell
Lecture 2: Crystal Symmetry
Expression of d-dpacing in lattice parameters
Solid State Physics (1) Phys3710
CONDENSED MATTER PHYSICS PHYSICS PAPER A BSc. (III) (NM and CSc.) Harvinder Kaur Associate Professor in Physics PG.Govt College for Girls Sector -11, Chandigarh.
Crystals and Symmetry. Why Is Symmetry Important? Identification of Materials Prediction of Atomic Structure Relation to Physical Properties –Optical.
Mineralogy Carleton College Winter Lattice and its properties Lattice: An imaginary 3-D framework, that can be referenced to a network of regularly.
1/12/2015PHY 752 Spring Lecture 11 PHY 752 Electrodynamics 11-11:50 AM MWF Olin 107 Plan for Lecture 1: Reading: Chapters 1-2 in Marder’s text.
Lecture 8 (10/09/2006) Crystallography Part 1: Symmetry Operations
The internal order of minerals: Lattices, Unit Cell & Bravais Lattices
PH0101 UNIT 4 LECTURE 3 CRYSTAL SYMMETRY CENTRE OF SYMMETRY
Elementary Crystallography for X-ray Diffraction
Introduction to Crystallography
PH 0101 UNIT 4 LECTURE 1 INTRODUCTION TO CRYSTAL PHYSICS
X. Low energy electron diffraction (LEED)
Solid State Physics (1) Phys3710
ECEE 302 Electronic Devices Drexel University ECE Department BMF-Lecture Page -1 Copyright © 2002 Barry Fell 23 September 2002 ECEE 302: Electronic.
ME 381R Fall 2003 Micro-Nano Scale Thermal-Fluid Science and Technology Lecture 3: Microstructure of Solids Dr. Li Shi Department of Mechanical Engineering.
BRAVAIS LATTICE Infinite array of discrete points arranged (and oriented) in such a way that it looks exactly the same from whichever point the array.
Crystallography and Diffraction Theory and Modern Methods of Analysis Lectures 1-2 Introduction to Crystal Symmetry Dr. I. Abrahams Queen Mary University.
1 Crystalline Nature of Solids 01 Mar, Crystalline Nature of Solids.
EEE539 Solid State Electronics 1. Crystal Structure Issues that are addressed in this chapter include:  Periodic array of atoms  Fundamental types of.
Chapter 1 Crystal Structures. Two Categories of Solid State Materials Crystalline: quartz, diamond….. Amorphous: glass, polymer…..
Solid state physics Dr. Abeer Kamal Abd El-Aziz 1.
Chapter 1: Crystal Structure
MSE 630 Introduction to Solid State Physics Topics: Structure of Crystals classification of lattices reciprocal lattices bonding.
W.D. Callister, Materials science and engineering an introduction, 5 th Edition, Chapter 3 MM409: Advanced engineering materials Crystallography.
Electronic Band Structures electrons in solids: in a periodic potential due to the periodic arrays of atoms electronic band structure: electron states.
Lecture 2 PH 4891/581, Jan. 9, 2009 This file has parts of Lecture 2. First, here is the link to Dr. Spears’ website on semiconductor physics. Look at.
Prolog Text Book: C.Kittel, "Introduction to Solid State Physics", 8th ed.,Wiley (2005) Website:
ECE 875: Electronic Devices
(1) Course of MIT 3.60 Symmetry, Structure and Tensor Properties of Materials (abbreviation: SST)
PHY1039 Properties of Matter Crystallography, Lattice Planes, Miller Indices, and X-ray Diffraction (See on-line resource: )
Crystalline Solids :-In Crystalline Solids the atoms are arranged in some regular periodic geometrical pattern in three dimensions- long range order Eg.
Crystal Structure of Solids
Properties of engineering materials
M. Anil Kumar Children’s club lecture, NCCR
Nanoelectronics Chapter 5 Electrons Subjected to a Periodic Potential – Band Theory of Solids
Majmaah UniversityMajmaah University Department of PhysicsDepartment of Physics College of Science, Al-ZulfiCollege of Science, Al-Zulfi KINGDOM OF SAUDI.
ME 330 Engineering Materials
X-ray powder diffraction
PHS 460 X-ray crystallography and structural analyses 3 units (3 hrs/week) G.A. Adebayo, Department of Physics, UNAAB, Nigeria.
Crystal Structure NaCl Well defined surfaces
X-ray Diffraction & Crystal Structure Analysis
Phys 460 Describing and Classifying Crystal Lattices
Properties of engineering materials
Energy Bands in Crystals
Textbook: Condensed matter physics, 2nd ed. By M. Marder
CRYSTAL STRUCTURE & X-RAY DIFFRACTION
Carbon Nanomaterials and Technology
Semiconductor Processing Single Crystal Silicon
Chapter 1 Crystallography
3-Dimensional Crystal Structure.
Carbon Nanomaterials and Technology
Crystals and Symmetry.
Why Study Solid State Physics?
3-Dimensional Crystal Structure
PHY 752 Solid State Physics
L.
Presentation transcript:

Solid state physics N. Witkowski

Introduction Based on « Introduction to Solid State Physics » 8th edition Charles Kittel Lecture notes from Gunnar Niklasson http://www.teknik.uu.se/ftf/education/ftf1/FTFI_forsta_sidan.html 40h Lessons with N. Witkowski house 4, level 0, office 60111, e-mail:witkowski@insp.jussieu.fr 6 laboratory courses (6x3h): 1 extended report + 4 limited reports Semiconductor physics Specific heat Superconductivity Magnetic susceptibility X-ray diffraction Band structure calculation Evaluation : written examination 13 march (to be confirmed) 5 hours, 6 problems document authorized « Physics handbook for science and engineering» Carl Nordling, Jonny Osterman Calculator authorized Second chance in june Given between 23rd feb-6th march Registration : from 9th feb on board F and Q House 4 ground level Info comes later Home work

What is solid state ? Single crystals Polycristalline crystals Long range order and 3D translational periodicity Single crystals graphite 1.2 mm 4 nmx4nm Polycristalline crystals Single crystals assembly diamond Quasicrystals Long range order no no 3D translational periodicity Al72Ni20Co8 Amorphous materials Disordered or random atomic structure silicon

Subject of study Phenomena Material Variables Crystalline structure Atomic vibration, thermal properties Electronic structure, electrical – optical properties Superconductivity Magnetism Variables Temperature (mK – 3000 K) Energy (provided by provided by photons, neutrons, electrons or ions, meV- keV) Pressure (10-10 to 1010 Pa) Magnetic field (-50 T) Electric field ( - 1 GV/m) Material metals semiconductors insulators

Motivations Wide range of technological applications Materials science (applications of mechanical, electrical, optical, magnetic…properties of solids) Semiconductor technology and micro-electronics Microstructure engineering, nano-technology Inorganic chemistry Biological materials, biomimetics Pharmaceutical materials science Medical technology …

Outline Corresponding chapter in Kittel book [1] Crystal structure 1 [2] Reciprocal lattice 2 [3] Diffraction 2 [4] Crystal binding no lecture 3 [5] Lattice vibrations 4 [6] Thermal properties 5 [7] Free electron model 6 [8] Energy band 7,9 [9] Electron movement in crystals 8 Metals and Fermi surfaces 9 [10] Semiconductors 8 [11] Superconductivity 10 [12] Magnetism 11

Chap.1 Crystal structure

Introduction Aim : A : defining concepts and definitions B : describing the lattice types C : giving a description of crystal structures

A. Concepts, definitions A1. Definitions Crystal : 3 dimensional periodic arrangments of atomes in space. Description using a mathematical abstraction : the lattice Lattice : infinite periodic array of points in space, invariant under translation symmetry. Basis : atoms or group of atoms attached to every lattice point Crystal = basis+lattice

A. Concepts, definitions Translation vector : arrangement of atoms looks the same from r or r’ point r’=r+u1a1+u2a2+u3a3 : u1, u2 and u3 integers = lattice constant a1, a2, a3 primitive translation vectors T=u1a1+u2a2+u3a3 translation vector r = a1+2a2 r’= 2a1- a2 T=r’-r=a1-3a2

A. Concepts, definitions A2.Primitive cell Standard model volume associated with one lattice point Parallelepiped with lattice points in the corner Each lattice point shared among 8 cells Number of lattice point/cell=8x1/8=1 Vc= |a1.(a2xa3)|

A. Concepts, definitions Wigner-Seitz cell planes bisecting the lines drawn from a lattice point to its neighbors

A. Concepts, definitions A3.Crystallographic unit cell larger cell used to display the symmetries of the cristal Not primitive

B. Lattice types B1. Symmetries : Translations Rotation : 1,2,3,4 and 6 (no 5 or 7) Mirror reflection : reflection about a plane through a lattice point Inversion operation (r -> -r) three 4-fold axes of a cube four 3-fold axes of a cube six 2-fold axes of a cube planes of symmetry parallel in a cube

B. Lattice types B2. Bravais lattices in 2D 5 types general case : oblique lattice |a1|≠|a2| , (a1,a2)=φ special cases : square lattice: |a1|=|a2| , φ= 90° hexagonal lattice: |a1|=|a2| , φ= 120° rectangular lattice: |a1|≠|a2| , φ= 90° centered rectangular lattice: |a1|≠|a2| , φ= 90°

B. Lattice types B3. Bravais lattices in 3D : 14 system Number of lattices Cell axes and angles Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90° Tetragonal |a1|=|a2|≠|a3| , α=β=γ=90° Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90° Trigonal |a1|=|a2|=|a3| , α=β=γ<120°≠90° Hexagonal |a1|=|a2|≠|a3| , α=β=90° γ=120°

B. Lattice types B3. Bravais lattices in 3D : 14 system Number of lattices Cell axes and angles Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90° Tetragonal |a1|=|a2|≠|a3| , α=β=γ=90° Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90° Trigonal |a1|=|a2|=|a3| , α=β=γ<120°≠90° Hexagonal |a1|=|a2|≠|a3| , α=β=90° γ=120° Base centered monoclinic

B. Lattice types B3. Bravais lattices in 3D : 14 system Number of lattices Cell axes and angles Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90° Tetragonal |a1|=|a2|≠|a3| , α=β=γ=90° Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90° Trigonal |a1|=|a2|=|a3| , α=β=γ<120°≠90° Hexagonal |a1|=|a2|≠|a3| , α=β=90° γ=120° Base centered orthorhombic Body centered orthorhombic Face centered orthorhombic

B. Lattice types B3. Bravais lattices in 3D : 14 system Number of lattices Cell axes and angles Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90° Tetragonal |a1|=|a2|≠|a3| , α=β=γ=90° Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90° Trigonal |a1|=|a2|=|a3| , α=β=γ<120°≠90° Hexagonal |a1|=|a2|≠|a3| , α=β=90° γ=120° Body centered tetragonal

B. Lattice types B3. Bravais lattices in 3D : 14 system Number of lattices Cell axes and angles Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90° Tetragonal |a1|=|a2|≠|a3| , α=β=γ=90° Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90° Trigonal |a1|=|a2|=|a3| , α=β=γ<120°≠90° Hexagonal |a1|=|a2|≠|a3| , α=β=90° γ=120° Simple cubic sc Body centered cubic bcc Face centered cubic fcc

B. Lattice types B3. Bravais lattices in 3D : 14 system Number of lattices Cell axes and angles Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90° Tetragonal |a1|=|a2|≠|a3| , α=β=γ=90° Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90° Trigonal |a1|=|a2|=|a3| , α=β=γ<120°≠90° Hexagonal |a1|=|a2|≠|a3| , α=β=90° γ=120°

B. Lattice types B3. Bravais lattices in 3D : 14 system Number of lattices Cell axes and angles Triclinic 1 |a1|≠|a2|≠|a3| , α≠β≠γ Monoclinic 2 |a1|≠|a2|≠|a3| , α=γ=90°≠β Orthorhombic 4 |a1|≠|a2|≠|a3| , α=β=γ=90° Tetragonal |a1|=|a2|≠|a3| , α=β=γ=90° Cubic 3 |a1|=|a2|=|a3| , α=β=γ=90° Trigonal |a1|=|a2|=|a3| , α=β=γ<120°≠90° Hexagonal |a1|=|a2|≠|a3| , α=β=90° γ=120°

B. Lattice types B4. Examples : bcc Bcc cell : a, 90°, 2 atoms/cell Primitive cell : ai vectors from the origin to lattice point at body centers Rhombohedron : a1= ½ a(x+y-z), a2= ½ a(-x+y+z), a3= ½ a(x-y+z), edge ½ a Wigner-Seitz cell z a3 a2 y x a1

B. Lattice types B5. Examples : fcc fcc cell : a, 90°, 4 atoms/cell Primitive cell : ai vectors from the origin to lattice point at face centers Rhombohedron : a1= ½ a(x+y), a2= ½ a(y+z), a3= ½ a(x+z), edge ½ a Wigner-Seitz cell z x y

B. Lattice types B6. Examples : fcc - hcp different way of stacking the close-packed planes Spheres touching each other about 74% of the space occupied B7. Example : diamond structure fcc structure 4 atoms in tetraedric position Diamond, silicon fcc : 3 planes A B C hcp : 2 planes A B

C. Crystal structures C1. Miller index lattice described by set of parallel planes usefull for cristallographic interpretation In 2D, 3 sets of planes Miller index Interception between plane and lattice axis a, b, c Reducing 1/a,1/b,1/c to obtain the smallest intergers labelled h,k,l (h,k,l) index of the plan, {h,k,l} serie of planes, [u,v,w] or <u,v,w> direction http://www.doitpoms.ac.uk/tlplib/miller_indices/lattice_index.php

C. Crystal structures C2. Miller index : example plane intercepts axis : 3a1 , 2a2, 2a3 inverses : 1/3 , 1/2 , 1/2 integers : 2, 3, 3 h=2 , k=3 , l=3 Index of planes : (2,3,3)