PHYS 1441 – Section 002 Lecture #10 Wednesday, Feb. 20, 2013 Dr. Jaehoon Yu Newton’s Third Law Categories of forces Application of Newton’s Laws –Motion.

Slides:



Advertisements
Similar presentations
Forces and Newton’s Laws of Motion
Advertisements

PHYS 1441 – Section 001 Lecture #6
PHYS 1441 – Section 002 Lecture #5 Wednesday, Jan. 30, 2013 Dr. Jaehoon Yu One Dimensional Motion One dimensional Kinematic Equations How do we solve kinematic.
Sep. 12, 2001 Dr. Larry Dennis, FSU Department of Physics1 Physics 2053C – Fall 2001 Chapter 4 Forces and Newton’s Laws of Motion.
Wednesday, Feb. 25, 2009 PHYS , Spring 2009 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #8 Wednesday, Feb. 25, 2009 Dr. Jaehoon Yu Newton’s.
Chapter 5: The laws of motion
Newton’s Laws.
Forces and The Laws of Motion
Weight is a force that is defined from the gravitational attraction between two masses. The gravitational force causes the less massive object to accelerate.
1 Honors Physics 1 Class 03 Fall 2013 Force Newton’s Laws Everyday Forces.
Forces - pushes or pulls Contact forces - requires contact to act
Thursday, June 16, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #8 Thursday, June 16, 2011 Dr. Jaehoon Yu Motion Under.
Tuesday, June 30, 2015PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #11 Tuesday, June 30, 2015 Dr. Jaehoon Yu Newton’s Law.
Monday, Apr. 7, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #19 Monday, Apr. 7, 2008 Dr. Jaehoon Yu Linear Momentum.
Force A push or pull exerted on an object..
Wednesday, Feb. 18, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #9 Wednesday, Feb. 18, 2004 Dr. Jaehoon Yu Chapter.
Newton’s Second Law of Motion. Force and Acceleration Force is a push or a pull acting on an object. Acceleration occurs when the VELOCITY of an object.
Wednesday, June 24, 2015 PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #9 Wednesday, June 24, 2015 Dr. Jaehoon Yu Newton’s.
Unit 1 B Newton's Laws of Motion. 2 Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces.
Tuesday, Sept. 23, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #10 Tuesday, Sept. 23, 2014 Dr. Jaehoon Yu Newton’s Laws.
Wednesday, June 18, 2014 PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #9 Wednesday, June 18, 2014 Dr. Jaehoon Yu Newton’s.
Monday, Sept. 18, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #5 Monday, Sept. 18, 2002 Dr. Jaehoon Yu 1.Newton’s Laws.
PHYS 1441 – Section 002 Lecture #9 Monday, Feb. 18, 2013 Dr. Jaehoon Yu Free Body Diagram Newton’s Third Law Categories of forces.
Monday, June 29, 2015PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #10 Monday, June 29, 2015 Dr. Jaehoon Yu Centripetal Acceleration.
Tuesday, June 14, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #6 Tuesday, June 14, 2011 Dr. Jaehoon Yu Newton’s Laws.
Monday, June 16, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #8 Monday, June 16, 2014 Dr. Jaehoon Yu What is the Force?
Wednesday, Mar. 5, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #13 Wednesday, Mar. 5, 2008 Dr. Jaehoon Yu Static and.
Monday, Feb. 4, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #6 Monday, Feb. 4, 2008 Dr. Jaehoon Yu Examples for 1-Dim.
Monday, June 22, 2015PHYS , Summer 2015 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #8 Monday, June 22, 2015 Dr. Jaehoon Yu Newton’s Second.
Thursday, Sept. 18, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #9 Thursday, Sept. 18, 2014 Dr. Jaehoon Yu Newton’s Laws.
Monday, Oct. 11, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #10 Monday, Oct. 11, 2010 Dr. Jaehoon Yu Force of Friction.
Wednesday, Apr. 8, 2009PHYS , Spring 2009 Dr. Jaehoon Yu PHYS 1441 – Section 002 Lecture #17 Wednesday, Apr. 8, 2009 Dr. Jaehoon Yu Linear Momentum.
Monday, Feb. 16, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #8 Monday, Feb. 16, 2004 Dr. Jaehoon Yu Chapter four:
Wednesday, June 15, 2011 PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #7 Wednesday, June 15, 2011 Dr. Jaehoon Yu Force of.
Wednesday, June 6, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #6 Wednesday, June 6, 2007 Dr. Jaehoon Yu Reference.
Monday, Oct. 12, 2009PHYS , Fall 2009 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #12 Monday, Oct. 12, 2009 Dr. Mark Sosebee (Disguised as.
Thursday, June 7, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #7 Thursday, June 7, 2007 Dr. Jaehoon Yu Application.
PHYS 1441 – Section 002 Lecture #13 Monday, March 4, 2013 Dr. Jaehoon Yu Newton’s Law of Universal Gravitation Motion in Resistive Force Work done by a.
Monday, June 9, 2008PHYS , Summer 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #7 Monday, June 9, 2008 Dr. Jaehoon Yu Exam problem solving.
Monday, Mar. 3, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #12 Monday, Mar. 3, 2008 Dr. Jaehoon Yu Types of Forces.
PHYS 1443 – Section 001 Lecture #7 Monday, February 21, 2011 Dr. Jaehoon Yu Categories of Forces Free Body Diagram Force of Friction Application of Newton’s.
REVISION NEWTON’S LAW. Quantity with magnitude and direction. e.g. displacement, velocity, acceleration, force and weight.. VECTOR Quantity having only.
Monday, Mar. 10, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #14 Monday, Mar. 10, 2008 Dr. Jaehoon Yu Uniform Circular.
PHYS 1443 – Section 001 Lecture #8 Wednesday, February 23, 2011 Dr. Jaehoon Yu Application of Newton’s Laws –Motion with friction Uniform Circular Motion.
Monday, June 13, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #5 Monday, June 13, 2011 Dr. Jaehoon Yu Newton’s Laws.
Forces and Newton’s Laws of Motion. A force is a push or a pull. Arrows are used to represent forces. The length of the arrow is proportional to the magnitude.
AP Chapter 4. Force - a push or pull Contact Force – Noncontact Force – mass.
Monday, Sept. 20, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Newton’s Laws of Motion Gravitational Force and Weight Newton’s third law of motion 2.Application.
Monday, Sept. 29, PHYS , Fall 2008 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #8 Monday, Sept. 29, 2008 Dr. Jaehoon Yu Newton’s Laws.
Monday, Oct. 1, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #9 Monday, Oct. 1, 2007 Dr. Jaehoon Yu Free Body Diagram.
PHYS 1441 – Section 002 Lecture #11 Monday, Feb. 25, 2013 Dr. Jaehoon Yu Application of Newton’s Laws Motion without friction Force of Friction Motion.
Today: (Ch. 2 & 3) HDevelop the equations to describe motion  Look at some situations where we can apply them.
Wednesday, Oct. 1, PHYS , Fall 2008 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #9 Wednesday, Oct. 1, 2008 Dr. Jaehoon Yu Free Body.
PHYS 1441 – Section 002 Lecture #7
PHYS 1443 – Section 003 Lecture #8
PHYS 1443 – Section 002 Lecture #8
Forces - pushes or pulls Contact forces - requires contact to act
Only 25 more lectures after today!!
PHYS 1441 – Section 002 Lecture #11
PHYS 1441 – Section 002 Lecture #11
PHYS 1441 – Section 001 Lecture #6
Chapter 5: Force and Motion – I
PHYS 1443 – Section 001 Lecture #6
PHYS 1441 – Section 002 Lecture #8
PHYS 1443 – Section 003 Lecture #8
PHYS 1443 – Section 001 Lecture #6
PHYS 1441 – Section 001 Lecture #6
Newton’s 3rd Law and Free Body Diagrams
PHYS 1443 – Section 003 Lecture #10
PHYS 1441 – Section 002 Lecture #13
Presentation transcript:

PHYS 1441 – Section 002 Lecture #10 Wednesday, Feb. 20, 2013 Dr. Jaehoon Yu Newton’s Third Law Categories of forces Application of Newton’s Laws –Motion without friction –Motion with friction Today’s homework is homework #6, due 11pm, Tuesday, Feb. 26!!

Announcements Quiz #3 Wednesday, Feb. 27 –At the beginning of the class –Covers CH4.1 through what we learn Monday, Feb. 25 Please make sure that you pay for Quest homework access today!! –The deadline is coming Monday, Feb. 25, but –You will lose all access to your homework site and grades if you do not pay by Feb. 25 –No extension will be granted for a lost access! Wednesday, Feb. 20, PHYS , Spring 2013 Dr. Jaehoon Yu

Monday, Feb. 21, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 3 Special Project #3 for Extra Credit A large man and a small boy stand facing each other on frictionless ice. They put their hands together and push against each other so that they move apart. a) Who moves away with the higher speed, by how much and why? b) Who moves farther in the same elapsed time, by how much and why? Derive the formulae for the two problems above in much more detail and explain your logic in a greater detail than what is in pages 7 and 8 of this lecture note. Be sure to clearly define each variable used in your derivation. Each problem is 10 points. Due is Wednesday, Feb. 27

Wednesday, Feb. 20, PHYS , Spring 2013 Dr. Jaehoon Yu 4 Newton’s Third Law (Law of Action and Reaction) If two objects interact, the force F 21 that object 2 exerts on object 1 is equal in magnitude and opposite in direction to the force F 12 object 1 exerts on object F 21 F 12 The reaction force is equal in magnitude to the action force but in opposite direction. These two forces always act on different objects. What is the reaction force to the force of a free falling object? The gravitational force the object exerts on the Earth! Stationary objects on top of a table has a reaction force (called the normal force) from table to balance the action force, the gravitational force.

Wednesday, Feb. 20, 2013 PHYS , Spring 2013 Dr. Jaehoon Yu 5 Suppose that the magnitude of the force P is 36 N. If the mass of the spacecraft is 11,000 kg and the mass of the astronaut is 92 kg, what are the accelerations? Ex. The Accelerations Produced by Action and Reaction Forces Which one do you think will get larger acceleration?

Wednesday, Feb. 20, 2013 PHYS , Spring 2013 Dr. Jaehoon Yu 6 Ex. continued Force exerted on the space craft by the astronaut Force exerted on the astronaut by the space craft space craft’s acceleration Astronaut’s acceleration

Wednesday, Feb. 20, PHYS , Spring 2013 Dr. Jaehoon Yu 7 Example of Newton’s 3 rd Law A large man and a small boy stand facing each other on frictionless ice. They put their hands together and push against each other so that they move apart. a) Who moves away with the higher speed and by how much? M m F 12 F 21 = - F 12 Since and Establish the equation Divide by m

Wednesday, Feb. 20, PHYS , Spring 2013 Dr. Jaehoon Yu 8 b) Who moves farther while their hands are in contact? Given in the same time interval, since the boy has higher acceleration and thereby higher speed, he moves farther than the man. So boy’s velocity is higher than man’s, if M>m, by the ratio of the masses. Man’s velocity Boy’s velocity Boy’s displacement Man’s displacement Example of Newton’s 3rd Law, cnt’d

Wednesday, Feb. 20, Categories of Forces Fundamental Forces: Truly unique forces that cannot be derived from any other forces –Total of three fundamental forces Gravitational Force Electro-Weak Force Strong Nuclear Force Non-fundamental forces: Forces that can be derived from fundamental forces –Friction –Tension in a rope –Normal or support forces PHYS , Spring 2013 Dr. Jaehoon Yu

Wednesday, Feb. 20, 2013 PHYS , Spring 2013 Dr. Jaehoon Yu 10 The normal force is one component of the force that a surface exerts on an object with which it is in contact – namely, the component that is perpendicular to the surface. The Normal Force

Wednesday, Feb. 20, 2013 PHYS , Spring 2013 Dr. Jaehoon Yu 11 Some normal force exercises Case 1: Hand pushing down on the book Case 2: Hand pulling up the book

Wednesday, Feb. 20, Some Basic Information Normal Force, n:n: When Newton’s laws are applied, external forces are only of interest!! Why? Because, as described in Newton’s first law, an object will keep its current motion unless non-zero net external force is applied. Tension, T:T: The force that reacts to action forces due to the surface structure of an object. Its direction is perpendicular to the surface. The reactionary force by a stringy object against an external force exerted on it. A graphical tool which is a diagram of external forces on an object object and is extremely useful analyzing forces and motion!! Drawn only on an object. Free-body diagram PHYS , Spring 2013 Dr. Jaehoon Yu