Alternating Current Circuits

Slides:



Advertisements
Similar presentations
Alternating-Current Circuits
Advertisements

Alternating Current Circuits and Electromagnetic Waves
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 21: Alternating Currents Sinusoidal.
Alternating Current Circuits Chapter 33 Note: This topic requires you to understand and manipulate sinusoidal quantities which include phase differences.
AC CIRCUITS Every slide contains valuable and need-to-know information that has to be understood and retained before proceeding. Throughout this PowerPoint.
AC Circuits Physics 102 Professor Lee Carkner Lecture 24.
AC Circuits Physics 102 Professor Lee Carkner Lecture 24.
Alternating Current Circuits
Alternating Current Circuits and Electromagnetic Waves
Alternating Current Physics 102 Professor Lee Carkner Lecture 23.
AC Circuits Physics 102 Professor Lee Carkner Lecture 23.
AC Circuits PH 203 Professor Lee Carkner Lecture 23.
Alternating Current Circuits
Copyright © 2009 Pearson Education, Inc. Lecture 10 – AC Circuits.
3/31/2020USF Physics 1011 Physics 101 AC Circuits.
chapter 33 Alternating Current Circuits
Chapter 32A – AC Circuits A PowerPoint Presentation by
1 My Chapter 21 Lecture Outline. 2 Chapter 21: Alternating Currents Sinusoidal Voltages and Currents Capacitors, Resistors, and Inductors in AC Circuits.
Alternating Current Circuits
Fall 2008 Physics 121 Practice Problem Solutions 13 Electromagnetic Oscillations AC Circuits Contents: 121P13 - 2P, 3P, 9P, 33P, 34P, 36P, 49P, 51P, 60P,
Lab 8: AC RLC Resonant Circuits Only 4 more labs to go!! DC – Direct Current time current AC – Alternating Current time current When using AC circuits,
Chapter 22 Alternating-Current Circuits and Machines.
AC Circuits (Chapt 33) circuits in which the currents vary in time
Lecture 18 RLC circuits Transformer Maxwell Electromagnetic Waves.
ARRDEKTA INSTITUTE OF TECHNOLOGY GUIDED BY GUIDED BY Prof. R.H.Chaudhary Prof. R.H.Chaudhary Asst.prof in electrical Asst.prof in electrical Department.
Chapter 33 Alternating Current Circuits CHAPTER OUTLINE 33.1 AC Sources 33.2 Resistors in an AC Circuit 33.3 Inductors in an AC Circuit 33.4 Capacitors.
Alternating Current Circuits
Copyright © 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits.
Chapter 31 Alternating Current.
Alternating Current Circuits
Alternating Current Circuits and Electromagnetic Waves
Alternating Current Electricity NCEA A.S 3.6 Text Chapters
Example A square coil of 100 loops is quickly pulled from the magnetic field as shown in 0.10 s. Calculate the change in flux. FBfinal =0 FBinitial =
21-11 LR Circuit Any inductor will have some resistance. An LR circuit has some properties similar to an RC circuit. See formula and diagrams on page 641.
1 Alternating Current Circuits Chapter Inductance CapacitorResistor.
Alternating Current Circuits and Electromagnetic Waves Chapter 21.
Chapter 23 Alternating Current Circuits Capacitors and Capacitive Reactance The resistance in a purely resistive circuit has the same value at all.
110/16/2015 Applied Physics Lecture 19  Electricity and Magnetism Induced voltages and induction Energy AC circuits and EM waves Resistors in an AC circuits.
CHAPTER 33) ALTERNATING-CURRENT CIRCUITS 33.1 : AC SOURCES AND PHASORS An ac circuit consists of circuit elements and a generator that provides athe alternating.
The Last Leg The Ups and Downs of Circuits Chapter 31.
Capacitors in AC Circuits. In a capacitor in a dc circuit, charge flows until the capacitor is charged. In an ac circuit with a capacitor, charge flows.
Alternating Current Circuits. Resistance Capacitive Reactance, X C.
Lecture 17 AC circuits RLC circuits Transformer Maxwell.
Chapter 24 Time-Varying Currents and Fields. AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source An AC.
Chapter-23 Alternating Current Circuits. AC Circuits All the equipment in this operating room use alternating current circuits.
Copyright © 2009 Pearson Education, Inc. Chapter 33 Inductance, Electromagnetic Oscillations, and AC Circuits Part II.
EEE107 AC Circuits 1.
Fig 33-CO These large transformers are used to increase the voltage at a power plant for distribution of energy by electrical transmission to the power.
Roll No.Name 41.RATIYA RAJU 42.SATANI DARSHANA 43.SAVALIYA MILAN 44.SISARA GOVIND 45.VALGAMA HARDIK 46.VADHER DARSHAK 47.VADOLIYA MILAN 48.VALA GOPAL.
Slide 1Fig 33-CO, p Slide 2Fig 33-1, p the basic principle of the ac generator is a direct consequence of Faraday’s law of induction. When.
Physics 212 Lecture 21, Slide 1 Physics 212 Lecture 21.
April 26 th, 2006 AC Circuits PHYS 102 Where T is the period of oscillation.
Chapter 31 Lecture 33: Alternating Current Circuits: II HW 11 (problems): 30.58, 30.65, 30.76, 31.12, 31.26, 31.46, 31.56, Due Friday, Dec 11. Final.
Chapter 8 Alternating Current Circuits. AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source An AC circuit.
Lesson 11 AC Circuits  AC Ciruits  Power  Maximum and Instantaneous voltage drops and current  Phasor Diagrams  Phase angle  RLC Circuits  Resonance.
Alternating Current Circuits. AC Sources  : angular frequency of AC voltage  V max : the maximum output voltage of AC source.
Copyright R. Janow – Fall 2015 Physics Electricity and Magnetism Lecture 14E - AC Circuits & Resonance I – Series LCR Y&F Chapter 31, Sec. 3 – 8.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
1© Manhattan Press (H.K.) Ltd Series combination of resistors, capacitors and inductors Resistor and capacitor in series (RC circuit) Resistor and.
Chapter 19 Alternating Current Circuits and Electromagnetic Waves.
AC Current An AC circuit consists of a combination of circuit elements and an AC generator or source The output of an AC generator is sinusoidal and varies.
Announcements Midterm Exam next Friday In class, ~1 hr. Closed book, one page of notes Bring a calculator (not phone, computer, iPad, etc.) Practice problems.
Alternating Current Capacitors and Inductors are used in a variety of AC circuits.
Chapter 33 Alternating Current Circuits. Electrical appliances in the house use alternating current (AC) circuits. If an AC source applies an alternating.
Physics 213 General Physics Lecture Last Meeting: Self Inductance, RL Circuits, Energy Stored Today: Finish RL Circuits and Energy Stored. Electric.
5. Alternating Current Circuits
General Physics (PHY 2140) Lecture 19 Electricity and Magnetism
Alternating Current Circuits and Electromagnetic Waves
Chapter 33 Problems 3,10,17,21,22,26,32,33,37.
Presentation transcript:

Alternating Current Circuits Chapter 4 Alternating Current Circuits

AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source The output of an AC generator is sinusoidal and varies with time according to the following equation ΔV = ΔVmax sin 2ƒt Δv is the instantaneous voltage ΔVmax is the maximum voltage of the generator ƒ is the frequency at which the voltage changes, in Hz Same thing about the current (if only a resistor) I = Imax sin 2ƒt

Resistor in an AC Circuit Consider a circuit consisting of an AC source and a resistor The graph shows the current through and the voltage across the resistor The current and the voltage reach their maximum values at the same time The current and the voltage are said to be in phase Voltage varies as ΔV = ΔVmax sin 2ƒt Same thing about the current I = Imax sin 2ƒt

More About Resistors in an AC Circuit The direction of the current has no effect on the behavior of the resistor The rate at which electrical energy is dissipated in the circuit is given by P = i2 R = (Imax sin 2ƒt)2 R where i is the instantaneous current the heating effect produced by an AC current with a maximum value of Imax is not the same as that of a DC current of the same value The maximum current occurs for a small amount of time Averaging the above formula over one cycle we get

rms Current and Voltage The rms current is the direct current that would dissipate the same amount of energy in a resistor as is actually dissipated by the AC current Alternating voltages can also be discussed in terms of rms values

Ohm’s Law in an AC Circuit rms values will be used when discussing AC currents and voltages AC ammeters and voltmeters are designed to read rms values Many of the equations will be in the same form as in DC circuits Ohm’s Law for a resistor, R, in an AC circuit ΔVrms = Irms R Also applies to the maximum values of v and i

Example: an AC circuit An ac voltage source has an output of DV = 150 sin (377 t). Find (a) the rms voltage output, (b) the frequency of the source, and (c) the voltage at t = (1/120)s. (d) Find the maximum current in the circuit when the generator is connected to a 50.0W resistor.

Capacitors in an AC Circuit Consider a circuit containing a capacitor and an AC source The current starts out at a large value and charges the plates of the capacitor There is initially no resistance to hinder the flow of the current while the plates are not charged As the charge on the plates increases, the voltage across the plates increases and the current flowing in the circuit decreases

More About Capacitors in an AC Circuit The current reverses direction The voltage across the plates decreases as the plates lose the charge they had accumulated The voltage across the capacitor lags behind the current by 90°

Capacitive Reactance and Ohm’s Law The impeding effect of a capacitor on the current in an AC circuit is called the capacitive reactance and is given by When ƒ is in Hz and C is in F, XC will be in ohms Ohm’s Law for a capacitor in an AC circuit ΔVrms = Irms XC

Inductors in an AC Circuit Consider an AC circuit with a source and an inductor The current in the circuit is impeded by the back emf of the inductor The voltage across the inductor always leads the current by 90°

Inductive Reactance and Ohm’s Law The effective resistance of a coil in an AC circuit is called its inductive reactance and is given by XL = 2ƒL When ƒ is in Hz and L is in H, XL will be in ohms Ohm’s Law for the inductor ΔVrms = Irms XL

Example: AC circuit with capacitors and inductors A 2.40mF capacitor is connected across an alternating voltage with an rms value of 9.00V. The rms current in the capacitor is 25.0mA. (a) What is the source frequency? (b) If the capacitor is replaced by an ideal coil with an inductance of 0.160H, what is the rms current in the coil?