Regulación de los Canales de iones. Los canales de iones los podemos agrupar en función de su capacidad de ser regulados. Canales no Regulables. Son Canales.

Slides:



Advertisements
Similar presentations
Measurement-A Common Language
Advertisements


The Nobel Prize in Chemistry 2003 Peter AgreRoderick MacKinnon for discoveries concerning channels in cell membranes "for the discovery of water channels"
Understanding Transport through Membranes. The importance of ion transport through membranes Water is an electrically polarizable substance, which means.
Ion Channels The plasma membrane is 6-8nm thick, and consists of a mosaic of lipids and proteins. The lipid is hydrophobic, and will not allow ions through.
Chapter 10 Membrane Transport Chapter 10 Membrane Transport Biochemistry I Dr. Loren Williams Biochemistry I Dr. Loren Williams Revised 03/11/2013.
K + Channels Copyright © by Joyce J. Diwan. All rights reserved. Biochemistry of Metabolism.
Alpha Helices Compose the Integral Protein Bacteriorhodopsin
How does the process of diffusion and the structure of the cell membrane help the cell maintain homeostasis? Como afectada la difusion a la membrana celular.
Aim: How does the structure of the cell membrane contribute to its function? Como afecta la estructura de la membrana celular a su funcion?
Aim: Why are Enzymes necessary for our survival? Por que son las enzimas necesarias para la sobrevivencia? A + B C C.
Aim: How does Osmosis and Diffusion compare? Como comparamos la difusion y la osmosis?
Volume 11, Issue 8, Pages (August 2003)
Structure of the Rho Family GTP-Binding Protein Cdc42 in Complex with the Multifunctional Regulator RhoGDI  Gregory R. Hoffman, Nicolas Nassar, Richard.
Hipervínculos Moisés Alejandro Rodríguez Ríos. 1°F T/M.
¿QUÉ ES UN HIPERVÍNCULO? Tecnologías De La Información.
Hipervínculos Moisés Alejandro Rodríguez Ríos. 1°F T/M.
Tecnología de la información 1 Valeria Azucena Antonio Palacios 1°F T/M BGC.
QUE ES HIPERVÍNCULO Tecnologías de la información Cecilia Guadalupe Rodríguez Universidad de Guadalajara 1F T/M.
Hipervínculos Aguilar herrera Nelly yazmin 1-F T/M Universidad de guadalaja.
Hipervínculos Romero Gutierrez Joan Azahel Características principales Los hipervínculos son enlaces o rutas de acceso a otro archivo, pagina Web o una.
HIPERVINCULOS Carlos Fabián Rojas Pelayo 1-F. ¿Qué es un hipervínculo?  Un hipervínculo es un enlace, normalmente entre dos páginas web de un mismo sitio,
Hipervínculos Ignacio Giovanni Chávez Pérez ¿Qué es? O Los hipervínculos son enlaces o rutas de acceso a otro archivo, pagina Web o una dirección de.
Este dispositivo también ayuda a separar los lados de alta presión y baja presión de un sistema de aire acondicionado. A través de la línea de líquido.
Interaction between Extracellular Hanatoxin and the Resting Conformation of the Voltage-Sensor Paddle in Kv Channels  Hwa C Lee, Julia M Wang, Kenton.
ACTIVIDAD 3 LOS HIPERVINCULOS ANAID ADRIANA GONZÁLEZ GARZA MTRA. ADRIANA UBIARCO TECNOLOGIAS DE LA INFORMACIÓN I.
A Gate in the Selectivity Filter of Potassium Channels
by Andrew D. Ferguson, Eckhard Hofmann, James W
Structure of an LDLR-RAP Complex Reveals a General Mode for Ligand Recognition by Lipoprotein Receptors  Carl Fisher, Natalia Beglova, Stephen C. Blacklow 
Richard J. Law, Keith Munson, George Sachs, Felice C. Lightstone 
Volume 26, Issue 1, Pages e3 (January 2018)
From Ionic Currents to Molecular Mechanisms
Volume 11, Issue 8, Pages (August 2003)
Frank J. Smith, Victor P.T. Pau, Gino Cingolani, Brad S. Rothberg 
J.R. Trudell, E Bertaccini  British Journal of Anaesthesia 
Volume 26, Issue 1, Pages e2 (January 2018)
Volume 130, Issue 6, Pages (September 2007)
Calcium channel structure and ligand binding sites.
Molecular Basis of Lysosomal Enzyme Recognition: Three-Dimensional Structure of the Cation-Dependent Mannose 6-Phosphate Receptor  David L Roberts, Daniel.
Crystal Structure of the MHC Class I Homolog MIC-A, a γδ T Cell Ligand
Crystal Structures of a Ligand-free MthK Gating Ring: Insights into the Ligand Gating Mechanism of K+ Channels  Sheng Ye, Yang Li, Liping Chen, Youxing.
Stacy D Benson, Jaana K.H Bamford, Dennis H Bamford, Roger M Burnett 
Hong Ye, Young Chul Park, Mara Kreishman, Elliott Kieff, Hao Wu 
J.L. Robertson, L.G. Palmer, B. Roux  Biophysical Journal 
A Gating Mechanism of the Serotonin 5-HT3 Receptor
Ligand Binding to the Voltage-Gated Kv1
Voltage-gated ion channels
William Welch, Shana Rheault, Duncan J. West, Alan J. Williams 
Marcos Sotomayor, Klaus Schulten  Biophysical Journal 
Volume 26, Issue 1, Pages e2 (January 2018)
Absence of Ion-Binding Affinity in the Putatively Inactivated Low-[K+] Structure of the KcsA Potassium Channel  Céline Boiteux, Simon Bernèche  Structure 
Structural Models of the KtrB, TrkH, and Trk1,2 Symporters Based on the Structure of the KcsA K+ Channel  Stewart R. Durell, H. Robert Guy  Biophysical.
Structure of the Rho Family GTP-Binding Protein Cdc42 in Complex with the Multifunctional Regulator RhoGDI  Gregory R. Hoffman, Nicolas Nassar, Richard.
Open-State Models of a Potassium Channel
Volume 130, Issue 6, Pages (September 2007)
Crystal Structures of Human GlyRα3 Bound to Ivermectin
Mechanism of Anionic Conduction across ClC
Hideki Kusunoki, Ruby I MacDonald, Alfonso Mondragón  Structure 
Stacy D Benson, Jaana K.H Bamford, Dennis H Bamford, Roger M Burnett 
Symmetry, Selectivity, and the 2003 Nobel Prize
Structure of an IκBα/NF-κB Complex
Structural Basis of Inward Rectification
Three protein kinase structures define a common motif
Interaction between Extracellular Hanatoxin and the Resting Conformation of the Voltage-Sensor Paddle in Kv Channels  Hwa C Lee, Julia M Wang, Kenton.
Structural Models of the MscL Gating Mechanism
Volume 78, Issue 6, Pages (June 2000)
Yinon Shafrir, Stewart R. Durell, H. Robert Guy  Biophysical Journal 
Structure of the HLA-DR10 β subunit and ligand binding sites.
Morgan Huse, Ye-Guang Chen, Joan Massagué, John Kuriyan  Cell 
Volume 98, Issue 3, Pages (February 2010)
Presentation transcript:

Regulación de los Canales de iones. Los canales de iones los podemos agrupar en función de su capacidad de ser regulados. Canales no Regulables. Son Canales de iones permanentemente abiertos ( non-gated channels ) Canales Regulados por Ligandos ( también llamados Receptores Ionotrópicos ). Canales Regulados por Voltaje Los Canales Regulados son canales que pueden estar en distintas conformaciones. Para su estudio nosotros solo vamos a considerar dos conformaciones que reciben el nombre de Abierta y Cerrada. Realizado por Dr. A. Martínez-Conde & Dra P. Mayor Dep. Bioquímica y Biología Molecular Fac. Medicina Universidad Complutense de Madrid No Regulable Abierto Cerrado Cambio Conformacional

Realizado por Dr. A. Martínez-Conde & Dra P. Mayor Dep. Bioquímica y Biología Molecular Fac. Medicina Universidad Complutense de Madrid

Canales Regulados por ligandos. Son Canales que presentan diferentes conformaciones en presencia o ausencia de Ligando. Realizado por Dr. A. Martínez-Conde & Dra P. Mayor Dep. Bioquímica y Biología Molecular Fac. Medicina Universidad Complutense de Madrid Canal de iones que está Abierto en Reposo. Se Cierra al desaparecer el Ligando. Un ejemplo sería el Canal de Na + y Ca ++ de membrana de Bastones Retinianos, sensible a cGMP El Canal en la célula en Reposo se encuentra en su conformación Abierta, La alta concentración citosólica de cGMP hace que este Ligando esté unido al Canal de Na + y Ca ++ y como consecuencia se encuentre estabilizado en su forma Abierta. Al cesar el estímulo, y volver la célula a su estado de reposo, la concentración de cGMP se recupera, uniendose de nuevo al sitio alostérico del Canal. Pasando a la conformación Abierta, en la que queda estabilizado hasta que se produzca un nuevo estímulo. Cambio Conformacional Abierto Cerrado Cambio Conformacional La degradación del cGMP citosólico por el enzima fosfodiesterasa, causa un descenso en su concentración y como consecuencia una disociación del Canal. La disociación causa un cambio conformacional a la forma Cerrada.

Bolas rojas grandes : agua / Bolas rojas pequeñas grupos C=0 cadena se señalan los aminácidos / Bolas verdes K+ Close-up: Only three of the subunits are shown to provide a clearer view of the pore. All seven of the possible K+ locations are shown. However, only four, at most, are occupied at the same time; the other sites contain waters. Residues comprise the selectivity pore and are shown as Sticks, colored CPK. The mainchain C=O's of these residues coordinate the K+ ions. The water-filled cavity is colored cyan. All of the waters shown here are highly-ordered and thus differ from the "bulk" water surrounding the channel. K+ at sites 2 & 4: Each K+ ion is coordinated by eight oxygens with water between them. For example, K+ at site 4 is coordinated by the side chains and C=O's of Thr 75. K+ between sites: The K+ ions are coordinated by only four of the mainchain C=O's. For example, the K+ between sites 2 and 3 is coordinated only by Val 76. A K+ is about to enter the pore from the cavity. K+ at sites 1 & 3: The K+ ions are coordinated by eight mainchain C=O's. For example, K+ at site 1 is coordinated by Gly77 and Tyr78. The pore is normally occupied by two K+ ions and two waters. Concerted movement of the two ions and their waters leads to K+ exit from, or entry into the cell. The scripted animation shows the sequence of steps in the exit pathway. Realizado por Dr. A. Martínez-Conde & Dra P. Mayor Dep. Bioquímica y Biología Molecular Fac. Medicina Universidad Complutense de Madrid La estructura de un canal de K+

Estructura del mismo canal de potasio en su forma abierta mostrando el paso del ión Texto K+ Selectivity Pore Close-up: Only three of the subunits are shown to provide a clearer view of the pore. All seven of the possible K+ locations are shown. However, only four, at most, are occupied at the same time; the other sites contain waters. Residues comprise the selectivity pore and are shown as Sticks, colored CPK. The mainchain C=O's of these residues coordinate the K+ ions. The water-filled cavity is colored cyan. All of the waters shown here are highly-ordered and thus differ from the "bulk" water surrounding the channel. K+ at sites 2 & 4: Each K+ ion is coordinated by eight oxygens with water between them. For example, K+ at site 4 is coordinated by the side chains and C=O's of Thr 75. K+ between sites: The K+ ions are coordinated by only four of the mainchain C=O's. For example, the K+ between sites 2 and 3 is coordinated only by Val 76. A K+ is about to enter the pore from the cavity. K+ at sites 1 & 3: The K+ ions are coordinated by eight mainchain C=O's. For example, K+ at site 1 is coordinated by Gly 77 and Tyr 78.The pore is normally occupied by two K+ ions and two waters. Concerted movement of the two ions and their waters leads to K+ exit from, or entry into the cell. The scripted animation shows the sequence of steps in the exit pathway. K+EffluxMechanismThe steps shown in the animation (See Morais-Cabral et al., Figs. 4 and 5.): State I Water-filled pore: The K+ that will soon exit is in the cavity. State H K+ at site 4: The K+ enters the pore and is replaced by another in the cavity. State E K+ at site 3: The K+ moves up one position (with the waters). Another K+ occupies the cavity from the cytosol. State C K+ at sites 2 & 4: The K+ moves up another position. Intermediate between site 2 and the extracellular site: The K+ is coordinated by only four of the mainchain C=O's prior to dissociation, first by Tyr 78 and finally by Gly 79. Dissociation from extracellular site: The K+ binds briefly at site 0 and at the fully hydrated extracellular site, then diffuses into the extracellular solution. Script ends with K+ at sites 2 & 4. For multiple cycles of ion efflux, the pathway resumes at State C above. K+ entry follows the same pathway in reverse direction. A single cycle takes about 10 nanoseconds to complete! Realizado por Dr. A. Martínez-Conde & Dra P. Mayor Dep. Bioquímica y Biología Molecular Fac. Medicina Universidad Complutense de Madrid

El Canal en Reposo se encuentra en su conformación Cerrada, Cuando se degrada la Acetil-Colina de la hendidura sináptica, se producirá un descenso en la concentración de este neurotransmisor. Esto hace que se disocie del sitio de unión del Canal de Na+ y como consecuencia se induzca un cambio conformacional en el Canal que le hace pasar a la forma Cerrada de Reposo Un aumento en la concentración de Acetil- Colina en la hendidura sináptica hace que este neurotransmisor se una al sitio de unión del Canal de Na+ y como consecuencia se induzca un cambio conformacional en el Canal que le hace pasar a la forma Abierta Cambio Conformacional Abierto Cerrado Cambio Conformacional Canales Regulados por Ligandos Canal de iones que se Abre por interacción con un Ligando. Un ejemplo es el Canal de Na + que es el Receptor Nicotínico de Acetil-Colina. Se encuentra en la membrana post- sináptica de nervio o placa motora.

Realizado por Dr. A. Martínez-Conde & Dra P. Mayor Dep. Bioquímica y Biología Molecular Fac. Medicina Universidad Complutense de Madrid Structure of the Nicotinic Acetylcholine Receptor Pore The initial view of the AChR pore is from the synaptic (or extracellular space). Each subunit of the pentamer (a2bgd) is colored individually. The two a subunits are red. The four transmembrane helices are labeled at their N-termini in the g subunit (cyan). The central ion pore is formed by side chains from one side of helix M2.The membrane thickness indicated is the apolar region of the membrane. Side View: The protein is shown as Sticks from the plane of the membrane. The M2 helices are blue; the rest are red. In the intact AChR, the N-termini of each subunit connect to the ligand- binding domain (at the top). The width and height of the pore domain can be displayed (Å). El Receptor Nicotínico de la Acetil-Colina Pore Features Pore Surface: The protein is shown Spacefill. One subunit has been removed to allow a view into the pore. The residues colored yellow form a "hydrophobic girdle" that is likely to have the gating function in AChR. The dark blue ball represents a Na+ ion trapped at the level of the maximal constriction. (The ion was inserted into the 1OED.pdb coordinate file for illustration.) Pore Gate: The view is from the top of the pore. The M2 helices are shown as Backbone; each is labeled at the N-termini by subunit name. The hydrophobic girdle side chains are shown as Sticks, colored yellow; they are labeled on the a subunit. Note that although these residues are not identical in each subunit, they are similar in polarity and size. The "hypothetical Na+ ion" is shown as blue Spacefill. The gate in this channel is hypothesized to restrict passage of hydrated Na+ ions. Compare the structure shown here with that of say, the KcsA channel where main chain C=O groups interact with dehydrated K+ ions. The energetic cost of removing water with apolar side chains in this pore would be prohibitive.

ACETIL-COLINA RECEPTOR GPCR MUSCARÍNICO Canal de iones que se Abre por interacción con una Proteína Reguladora. Un ejemplo sería el Canal de K + de músculo cardiaco Regulado por las Subunidades Gi  de la Proteína G i. Está regulado por el Receptor Muscarínico de de Acetil-Colina Transición Conformacional Realizado por Dr. A. Martínez-Conde & Dra P. Mayor Dep. Bioquímica y Biología Molecular Fac. Medicina Universidad Complutense de Madrid K+K+