Chapter 27.2 Models of the solar system

Slides:



Advertisements
Similar presentations
Reminders Homework 1 (Introduction to Mastering Astronomy) is due TODAY at 5 pm. Only 8 people have registered for Mastering Astronomy. All information.
Advertisements

Geocentric Model Earth is center of our Solar System
Do our planets move?.
Models of the Solar System *Early Models of the Solar System *Kepler’s Laws.
Models of the Solar System
MODELS OF THE SOLAR SYSTEM. ARISTOTLE Greek philosopher ( BC) He promoted an earth centered called geocentric, model of solar system He said the.
Planets of the Solar System Section 2 Section 2: Models of the Solar System Preview Key Ideas Early Models Kepler’s Laws Newton’s Explanation of Kepler’s.
CHAPTER 2: Gravitation and the Waltz of the Planets.
Welcome to the Neighborhood Our Solar System. What’s the difference between rotation and revolution? Each planet spins on its axis. Each planet spins.
Bell Ringer 9/8 OPINION QUESTION – How do you believe the solar system was formed?
Bill Nye on Planets and Moons
Scientific Models & Kepler’s Laws Scientific Models We know that science is done using the Scientific Method, which includes the following steps : Recognize.
Part 2: Motions of the Planets 1. Planets  While stars move through the sky they stay in the same place in relation to each other.  Ancient observers.
Reminders Answering cell phones during class shaves a little off your grade each time. Answering cell phones during class shaves a little off your grade.
History of Astronomy. Our Universe Earth is one of nine planets that orbit the sun The sun is one star in 100 billion stars that make up our galaxy- The.
Solar System Overview. Early Ideas  It was assumed that the Sun, planets, and stars orbited a stationary universe  This is known as a “geocentric” model,
Bellwork 1.Who is credited with the revolutionary model of a HELIOCENTRIC solar system? A. Aristotle B. Ptolemy C. Galileo D. Copernicus 2.The planets.
Chapter 26.2: Observing the Solar System. Early views of the organization of Space were much different than ours.
Origin of Modern Astronomy. Key Terms 1. Astronomy – It is the science that studies the universe. It includes the observation and interpretation of celestial.
© 2013 Pearson Education, Inc. Astronomy: A Beginner’s Guide to the Universe Seventh Edition © 2013 Pearson Education, Inc. Chapter 1 Lecture The Copernican.
Chapter 2 The Copernican Revolution. Chapter 2 Learning Objectives  Know the differences and similarities between the geocentric and heliocentric models.
CHAPTER 4 Gravitation and the Waltz of the Planets CHAPTER 4 Gravitation and the Waltz of the Planets.
Ch. 22 Origin of Modern Astronomy Sec. 1 Early Astronomy 200.
EARTH & SPACE SCIENCE Chapter 27 Planets of the Solar System 27.2 Models of the Solar System.
Notebooks: We had a very BASIC notebook check. For our next notebook check you need to have your cover completed, table of contents filled out, titles.
Model of the Solar System. Who is This Greek Guy?
Ch 22 Astronomy. Ancient Greeks 22.1 Early Astronomy  Astronomy is the science that studies the universe. It includes the observation and interpretation.
 Everything in outer space  Stars  Planets  Comets  Asteroids & Meteors  Solar System vs Galaxy vs Universe  What’s the difference?  SIZE?!
Kepler's Laws.
Developing the Science of Astronomy (Chapter 4). Student Learning Objectives Compare ancient and modern theories of the solar system Apply Kepler’s Laws.
Chapter 29 The Solar System Ch Models of the Solar System.
MODELS OF THE SOLAR SYSTEM Chap. 29, Sect. 1 OBJECTIVES: SWBAT… 1. Compare the models of the universe developed by Ptolemy and Copernicus. 2. Summarize.
Our Solar System.
Chapter 1 The Copernican Revolution. The planets’ motions Wanderers among the stars Retrograde motion.
Chapter 27 Formation of the Solar System The sun and all of the planets and other bodies that revolve around the sun.
History of Astronomy. People have been looking up at the sky trying to figure it out for as long as we have been around. Even earliest man noticed that.
Laws of Planetary Motion KEPLER & NEWTON. Kepler’s 3 Laws  1 st Law- Law of Ellipses  2 nd Law- Law of Equal Areas  3 rd Law- Law of Periods.
KEPLER’S LAWS OF PLANETARY MOTION Objective: I will summarize Kepler’s three laws of planetary motion. 11/10/15.
Historical Models of our Solar System and Kepler’s Laws of Planetary Motion.
CHAPTER 2: Gravitation and the Waltz of the Planets.
Formation of the Solar System, Kepler’s Laws Copyright © McGraw-Hill Education Formation of the Solar System.
Models of the Solar System Ch 27.2 Page 691 Early models  Around 2,000 years ago, Aristotle suggested the earth- centered or geocentric model of the.
EARTH & SPACE SCIENCE Chapter 27 Planets of the Solar System 27.2 Models of the Solar System.
CHAPTER 27 SECTION 2 EARTH AND SPACE AUSTIN HIGH SCHOOL Models of the Solar System.
History of Astronomy The guys with their eyes on the skies.
 Compare the models of the universe developed by Ptolemy and Copernicus.  Summarize Kepler’s three laws of planetary motion.  Describe how Newton explained.
Aristotle suggested an Earth-centered, or geocentric, model of the solar system. In this model, the sun, the stars, an the planets revolved around Earth.
CHAPTER 2: Gravitation and the Waltz of the Planets.
The Solar System and Planetary Motion.
Kepler’s laws of planetary motion
MODELS OF THE SOLAR SYSTEM
Part 1: Planets and SS models Part 2: Kepler’s Laws of Motion
Part 1: Planets and SS models Part 2: Kepler’s Laws of Motion
Science Starter Answer the following in your notebook: 1. When is the Earth closest to the Sun? 2. Does the speed of the Earth’s revolution change? 3.
22.1 Early Astronomy.
22.1 Early Astronomy.
What is the universe Part 2 Motion in Space
Section 2: Models of the Solar System
Solar System Overview.
Models of the Solar System
Physics of the Solar System
Chapter 3 Analyzing Scales and Motions of the Universe
Section 2: Models of the Solar System
The Laws of Planetary Motion
Lesson 2 Models of the Universe
CHAPTER 27.2: Gravitation and the
Aim: How do we compute Eccentricity?
Kepler’s Laws Ms. Jeffrey- Physics.
Early Ideas.
PLANETARY MOTION.
Presentation transcript:

Chapter 27.2 Models of the solar system Std. IE 1k- Students will recognize the cumulative nature of scientific evidence Objective 1: Compare models of the solar systems Objective 2: Summarize Kepler’s three laws of planetary motion Objective 3: Describe how Newton explained Kepler’s laws of motion

Models of the Solar System Geocentric – Earth centered model (Aristotle) the sun, stars, and planets revolve around the Earth Did not explain retrograde motion - the appearance of some planets moving backward

Epicycles – small circle movements (Ptolemy) Heliocentric model - the sun the center (Nicolaus Copernicus)

Objective 1: Compare models of the solar systems What is the geocentric model? Earth centered model What is the heliocentric model? Sun centered model What is the movement of planets in small circles? Epicycles What is the appearance of planets moving backward in the sky? Retrograde motion

Kepler’s Laws Johannes Kepler discovered patterns which led him to develop 3 laws that explained planetary motion 1) Law of Ellipses 2) Law of Equal Areas 3) Law of Period   A Polish clergyman named Nicholas Copernicus figured out by 1543 that those motions made sense if planets moved around the Sun, if the Earth was one of them, and if the more distant ones moved more slowly --so sometimes the Earth overtakes them, and they seem to move backwards for a while.  Brilliant mathematician Interested in astronomy early – saw the great comet 1577 and luner (red) eclipse Small pox left him visually impaired and hands were crippled

1) Law of Ellipses 1st law - States that each planet orbits the sun in a path called an ellipse (not a circle ) Elliptical orbits can vary in shape (elongated or circles) Eccentricity – the degree of elongation of an elliptical orbit explains that planets are orbiting the sun in a path described as an ellipse As the 2 objects are located closer together, the shape is similar to circle

2) Law of Equal Areas 2nd law - states that equal areas are covered in equal amounts of time as an object orbits the sun It describes the speed at which objects travel at different points in their orbits Ex. Mars moves fastest in its elliptical orbit when it is closest to the sun describes the speed at which any given planet will move while orbiting the sun

3) Law of Periods 3rd law – states the relationship between the average distance of a planet from the sun & the orbital period of the planet Scientist can find out how far away the planets are from the sun by using this law Orbital Period - the time required for a body to complete a single orbit  Unlike Kepler's first and second laws that describe the motion characteristics of a single planet, the third law makes a comparison between the motion characteristics of different planets. 

Objective 2: Summarize Kepler’s three laws of planetary motion Which of Kepler’s laws states that equal areas are covered in equal amounts of time? 2nd law – Law of Equal Area Which of Kepler’s laws states that each planet orbits the sun in a path called an ellipse? Law of Ellipses What is the time required for a body to complete a single orbit? Orbital Period

Newton’s Explanation of Kepler’s Law Newton used inertia to help explain Kepler’s laws. Inertia - a moving body will remain in motion and resist a change in speed or direction until an outside force acts on it Kepler’s laws explained how the planets moved, but not why they moved Plus 3rd law explained how planets moved around the sun, but did not explain the movement of moons Newton's Laws of Motion and Newton's Universal Law of Gravitation. 1st law of motion (inertia) – if there is acceleration then there is a force 2nd law of motion (F = ma) – calculates the force 3rd law of motion ( action reaction)  according to Newton's first law of motion, there must be a force acting on the planet that is always directed toward the center of the orbit -- that is toward the Sun! Newton's second law of motion allows us to state what the magnitude of that force

Newton’s Models of Orbits Planets do not follow a straight path Gravity = an outside force that cause the orbit to curve Gravity exists between any two objects in the universe Formation of curved orbits Gravitational pull sun pulls objects towards it Inertia keeps the object moving in a straight line Universal law of Gravitation - Fgravity = G M1 M2 / r2 G = 6.67 X 10-11 meters3 kilograms-1 seconds-2

Objective 3: Describe how Newton explained Kepler’s laws of motion What exists between any 2 objects in the universe? Gravity What is a body remaining in motion unless acted on by an outside force called? Inertia What is pulling the planets toward the sun? What gives planets their curved orbits? Inertia and gravitational pull