Raymundo F. Resurreccion, MD, FPCS

Slides:



Advertisements
Similar presentations
Acute phase proteins and other systemic responses to inflammation
Advertisements

Relevance of RNIs (DRVs) to Nutritional Support Alan Shenkin Department of Clinical Chemistry University of Liverpool.
Joanna Prickett North Bristol NHS Trust
Nutrition Implications of Starvation and Refeeding Syndrome
ACSM AMERICAN DIETETIC ASSOCIATION DIETITIANS OF CANADA 2009.
Surgery In Diabetes Mellitus (DM)
. . . and the surgical patient Carli Schwartz, RD,LDN
Nutrition in Surgical Patients Ronald Merrell, MD Chairman of Surgery Virginia Commonwealth University.
Parenteral Nutrition Graphic source:
Fluid and Electrolyte Management Presented by :sajede sadeghzade.
Refeeding Syndrome Management Issues Stella Hahn Pulmonary/Critical Care Fellow 2013.
Malnutrition, Starvation and Refeeding Syndrome Khursheed Jeejeebhoy.
© 2007 Thomson - Wadsworth Chapter 16 Nutrition in Metabolic & Respiratory Stress.
TPN Indications James S. Scolapio, M.D. Director of Nutrition Division of Gastroenterology and Hepatology Mayo Clinic Jacksonville, FL
Metabolic Response to Starvation and Trauma: Nutritional Requirements
Chapter Six: Metabolism and Energy Balance Define metabolism, anabolism and catabolism Explaining what is meant by the “protein sparing action” of carbo.
Ahmed Badrek- Alamoudi FRCS. Metabolic Response to Trauma- Fourth year Lecture
Parenteral nutrition in neonate. Goals minimizes weight loss improves growth and neurodevelopmental outcome reduce the risk of mortality and NEC.
Department of Biochemistry Faculty of Pharmacy Suez Canal University.
Kelvin Chan Department of Surgery, Queen Elizabeth Hospital Joint Hospital Surgical Grand Round 2013 nutrition in surgery facts, myths and controversies.
Lecture 6b 10 Feb Congestive heart failure Class activity-what is the best approach to avoiding CHF.
Parenteral Nutrition Designing the Solution Mark H. DeLegge, MD, FACG, AGAF, FASGE Digestive Disease Center Medical University of South Carolina.
Intestinal Failure Unit
Nutritional Needs of the Burn Patient Joan LeBoeuf, RD, CNSD UNM Burn Center Adult & Pediatric Injury from tragedy… hope!
Nutrition and Dietetics in the Normal Patient
Surgical Nutrition Dr. Robert Mustard September 28, 2010.
Energy and Protein Requirements Robert Kushner, MD Northwestern University Feinberg School of Medicine
Presented by : Dr. Mohammad Tarawneh. The human body is an engine designed to burn fuel in order to perform work. The fuels we utilize are called nutrients.
Optimizing Nutrition Therapy
Nutrition SUBJECTIVE FINDINGS  1 month prior to consult, patient claimed to have lost 20-30% of her weight (can be classified as severe weight loss),
Parenteral Nutrition This session will provide an overview of parenteral nutrition. Please see the associated chapter in the Manual, titled Parenteral.
Nutrition screening and assessment of surgical patients Surgical Nutrition Training Module Level 1 Philippine Society of General Surgeons Committee on.
Early Enteral Nutrition in the Critically Ill. Objectives To define early enteral nutrition To review the benefits of early enteral nutrition To explain.
Metabolic Response to Injury. Objectives Factors mediating the metabolic response Consequences of the metabolic response The differences between metabolic.
Feeding methods. Enteral & parenteral nutrition -enteral nutrition is needed for persons with underlying chronic disease or traumatic injury. -also elderly.
Metabolic Stress KNH 413 Level of injury depends on amount of calories and protein.
Surgical Nutrition Dr. Robert Mustard October 4, 2011.
Basic principles of nutritional science Department of Applied Science King Saud University/ Community College By: Murad Sawalha.
Surgery, Burns and Pruritis. Surgery -patient should be well nourished prior to surgery-this gives better recovery -however, surgical patients are often.
Nutritional Support of the Cacectic Patient. Recap Risk of Malnutrition Risk of Malnutrition Nutritional assessment Nutritional assessment History and.
Lecture 10b 21 March 2011 Parenteral Feeding. Nutrients go directly into blood stream bypassing gastrointestinal tract Used when a patient cannot, due.
Respiratory System KNH 411. Respiratory System Nutritional status and pulmonary function are interdependent Macronutrients fueled using oxygen and carbon.
Nutritional Support in Surgical Patients Nuha Al Masoud Noura Al-Shatiry Asma Al-Mandeel.
Luigi Greco - Faculty of Medicine of the University of Gulu Physiopathology of Malnutrition CALORIC EQUILIBRIUM : Meal energy stored into High Energy Phosphates,
Burns trauma sepsis GICardiacRenal Cancer Full thickness.
1 بسم الله الرحمن الرحيم. 2 The importance of Enteral Nutrition in critically ill patients Dr Mohammad Safarian.
بسم الله الرحمن الرحيم.
Minerals Chapter 7. What are minerals? Inorganic molecules Essential for human survival No caloric value Not degraded by cooking or digestion.
Lecture 10b 18 March 2013 Parenteral Feeding. Parenteral Feeding (going around ie circumventing the intestine) Nutrients go directly into blood stream.
Copyright © 2007, 2004, 2000, Mosby, Inc., an affiliate of Elsevier Inc. All Rights Reserved. (Relates to Chapter 67, “Nursing Management: Shock, Systemic.
Dr. Mahamed Hussein General Surgery Azadi Teaching Hospital
Dr Amit Gupta Associate Professor Dept.of Surgery
Metabolic Stress KNH 413.
Nutrition for Elderly and Obese
NUTRITIONAL SUPPORT IN SURGICAL PATIENTS
Metabolic Stress KNH 413 Work with hormones, proteins in the body and in nutrition therapy, immune system, and altered cellular metabolism due to stress.
Metabolic Stress KNH 413.
Nutritional Requirements
Nutrition Guidelines for Pressure Ulcer Prevention and Treatment:
Nutrition Evaluation and Support
11/15/2018 Nutrition 11/15/2018.
Metabolic Stress KNH 413.
Metabolic Stress KNH 413.
Critical Care Metabolic demand for inflammation, sepsis, surgery, trauma, wounds, organ failure increase stress factor by 1.3 With intubation, sedation.
What‘s the science behind Fresubin® 2 kcal/ fibre DRINK?
Metabolic Stress KNH 413 Level of injury will dictate the amount of energy/protein ** work with hormones present **imune system **Protein status **altered.
Nutrition for Patients with Metabolic or Respiratory Stress Chapter 16
Nutritional Requirements
Note.
Refeeding Syndrome Refeeding is a complication of surgery which is not immediately considered when patients show problems after initiating feeding.
Presentation transcript:

Raymundo F. Resurreccion, MD, FPCS Surgical Nutrition Raymundo F. Resurreccion, MD, FPCS

Objectives Differentiate metabolic responses to starvation and trauma Explain the energy utilization in patients undergoing injury and stress Recognize the role of nutritional support in patients undergoing stress and surgery

Objectives Determine basic nutritional requirements in the surgical patient Determine the appropriate route for delivery of nutrition Recognize the dangers of overfeeding

Metabolic Response to Injury

Physiological responses to Injury Injury, infection Tissues / blood mononuclear cells, endothelium Brain SNS HPA Cytokines NER Metabolic response Inflammatory response Immune response Diminished intake Increased expenditure

Mediators in SIRS/Sepsis EFFECTS Interleukin-1 Fever, proteolysis Prostaglandins Vasodilation Corticosteroids Hypermetabolism Glucagon Gluconeogenesis Norepinephrine Growth, thyroid hormones Acute catabolism Complement, anaphylatoxins Microcirculatory damage Kinin system, serotonin histamine Oxygen free radicals Membrane damage Tumor necrosis factor Tissue injury, shock Myocardial depressant factor Cardiac dysfunction Nitric oxide Vasodilation, hypotension

Stress Response to Injury

Neuro-endocrine Response Massive receptor stimulus Hypothalamo–pituitary axis Catecholamines Gluco + mineralo corticoids Glucagon ADH Insulin

Hormonal Response to Injury Hormonal Levels Glucose Production Proteolysis Protein Synthesis Catechols       Cortisol   Glucagon  Insulin HGH Testosterone —

Starvation vs. Severe Stress Starvation Continuum Stress Resting energy expenditure    Respiratory quotient 0.65 0.85 Counter regulatory hormones —    Primary fuel Fat Fat + amino acids Proteolysis + +++ Branched-chain oxidation

Starvation vs. Severe Stress Starvation Continuum Stress Hepatic protein synthesis + +++ Acute-phase protein production — Constitutive protein production     Urinary nitrogen losses Gluconeogenesis Ketone body production ++++

Metabolic Response to Injury Rapid glycogenolysis H2O + NaCl retention  edema Glucose intolerance Gluconeogenesis Protein synthesis redirected to acute phase proteins + wound healing Muscle wasting

Metabolic Response to Injury Increased energy expenditure Pain, anxiety, fever Muscular effort-work of breathing, shivering Physiologic stress response: Catabolic phase increased caloric needs, inadequate intake gluconeogenesis  wasting of endogenous protein stores, increased urinary nitrogen losses There are multiple sources of increased EE in the PICU which add to the physiologic response to stress…next slide

Energy Utilization Hypermetabolic state  increases demands  less efficient use of nutrients for energy  more nutrients used to meet the demands Negative energy balance is highly correlated to complications in critically ill patients

Effects of Surgical Trauma on Resting Energy Expenditure Surgical trauma is accompanied by a negative nitrogen balance Nitrogen balance is more negative than during pure fasting Long CL, et al. JPEN 1979;3:452-456

Substrate Utilization Glutamine Benedict and later Cahill demonstrated the biochemical and nutritional derangements during simple, unstressed starvation. 1. Limited storage of CHO - main fuel during fed state - 16-18 hours after NPO. 2. Fuel changes to fat except for obligatory CHO demands of brain, RBCs and renal parenchyma. 3. Gluconeogenesis - primarily dependent on protein sources - fat/glycerol contributing only 10% 4. The GI tract as a metabolic organ shuttling and utilizing glutamine. Muscle is metabolized as gluconeogenic substrate to supply the brain, kidney, tumor etc

Weight Loss after Surgical Trauma Where? Muscle Fat Why? Reduced food intake Increased energy expenditure Derangements in protein/fat metabolism

Oxidation of Carbohydrate and Fat in Sepsis 8 Glucose oxidation g/m2/h Sepsis score 0 10 20 30 Fat oxidation g/m2/h 3 Sepsis score 0 10 20 30 Stoner et al Br J Surg 1983

Magnitude of Risk Surgery Operative Risk Patient Anesthesia

Risk factors associated with death, analyzed by a multiple regression model Confidence interval Malnutrition2 1.87 1.01-3.34 Presence of cancer 2.07 1.03-4.15 Age ≥ 60y/o 2.30 1.26-4.21 Surgical treatment 0.16* 0.08-0.35 * p < 0.05 1 OR = odds ratio 2 Moderate and severe malnutrition Correia and Waitzberg, Clin Nutr 2003; 22:235-239

Consequences of Malnutrition Loss of lean body mass Poor wound healing, anastomotic breakdown Compromised immune defense Impaired organ function Increased mortality rates

Predictors of Poor Surgical Outcome Parameter Predictor Age Increased (>70 years) Type of Surgery Emergent, contaminated, open abdominal, thoracic or aortic surgery, prolonged surgery ASA > Class 3 Cardiac Presence of S3 gallop, jugular venous distention, MI within 6 mos, > 5 PVC, aortic stenosis, unstable angina, absence of beta-blockade Pulmonary COPD, FEV1 , 1.0, L PaO2 <60 , PCO2 > 50, fatigue with walking (steps) Neurologic Impairment, decreased function, nonambulatory status Renal Decreased creatinine clearance, BUN > 50 mg/dl Nutrition Hypoalbuminemia, hypokalemia Frailty Weakness, early exhaustion, dependency American College of Physicians

Loss of Lean Mass and Mortality Complications Relative to Loss of Lean Body Mass* Lean Body Mass (% loss of total) Complications (related to lost lean mass) Associated Mortality (%) 10 Impaired immunity, increased infection 20 Decreased healing, weakness, infection 30 Too weak to sit, pressure sores, pneumonia, no healing 50 40 Death, usually from pneumonia 100 *assuming no preexisting loss

Goals of Surgical Nutritional Support Maintain host defenses Support metabolic response Reduce the catabolic state and preserve lean body mass Support the depleted patient throughout the catabolic phase of recovery

Goals of Surgical Nutritional Support Improve patient outcomes Decrease surgical mortality Decrease surgical complications and infection Prevent/treat macro/micronutrient deficiencies Speed the healing / recovery process (Decrease the LOS)

Nutrition Support in Surgery Endocrine, metabolic, and immunologic alterations Full Wound healing Full Restoration of metabolic and immune homeostasis Surgery Adequate body reserves food intake

Nutrition Support in Surgery Endocrine, metabolic, and immunologic alterations Wound healing Restoration of metabolic and immune homeostasis Surgery Nutrition Support Inadequate body reserves Inadequate food intake Incomplete restoration of organ functions Multiple organ dysfunction, failure, and death

Necessary Length of Preoperative Nutrition in Malnourished Patients Prospective randomized studies 2-3 days: No improvement in outcome 5-7 days: Influence in outcome 7-10 days: Benefits outcome Reduction of postop morbidity and mortality Meguid: Am J Surg 1990; 159:345 **ENDPOINTS: Monitor nutrient intake (Calorie Count) Total lymphocyte count

ASPEN Guidelines Preoperative SNS should be administered to moderately or severely malnourished patients undergoing major gastrointestinal surgery for 7 - 14 days if the operation can be safely postponed. Postoperative SNS should be administered to patients whom it is anticipated will be unable to meet their nutrient needs orally for a period of 7 to 10 days. A.S.P.E.N. Board of Directors, JPEN 2002

Nutritional Assessment Body composition (anthropometric measurements) Biochemical data Clinical assessment Subjective Global Assessment (SGA) Indirect calorimetry

Computing Nutritional Requirement Total caloric requirement (TCR) Total protein requirement (TPR) Fluid requirements Micronutrient/Vitamin requirements

Nutritional Requirements Nutrients Carbohydrate Protein Fat Vitamins Minerals Water Calories Provided 4 kcal/g 9 kcal/g - National Research Council: Recommended Dietary Allowances,10th ed National Academy Press, 1989

Nutritional Requirements Calculations are based on: age sex weight and height stress factor activity level AFTER KNOWING THE NUTRITIONAL SATUS WE NOW NEED TO KNOW WHAT AND HOWMUCH NUTRITION DOES OUR PATIENT REQUIRE. Calculations for nutritional requirements are based on the following: 1. Age 2. Sex 3. Body size 4. Activity level

Nutritional Requirements Total Caloric Requirement (kcal/ day) 1. Harris-Benedict Equation (BEE) Male: 66.47 + (13.75 x BW) + (5 x height) - (6.76 x Age) x AF x SF Female: 655.1 + (9.56 x BW) + (1.85 x height) - (4.67 x age) x AF x SF TCR = BEE x AF x SF

Nutritional Requirements Activity factors Confined to bed = 1.2 Ambulatory = 1.3 Stress Factors Minor surgery = 1.2 Trauma = 1.3 - 1.4 Sepsis = 1.4 - 1.8 Burns = 2.0 - 2.2

Nutritional Requirements 2. Short Method Non stressed: 25 - 30 kcal/kg Stressed: 30 - 35 kcal/kg Underweight: Actual BW x 25-35 kcal/kg Overweight: Ideal BW x 25-35 kcal/kg TCR = wt (kg) x 25 - 35 kcal To give you the whole picture of how we compute for the requirements here are two methods. The first or Short Method is the easiest while the most difficult is the Harris-Benedict Long modification. Of course most of us will choose the easier method, but we can cover more of the patient’s needs if we use the Harris Benedict equation.

Conditions Affecting Caloric Needs REE Change Fever (per°C) +10 to 15% Sepsis +20 to 60% Trauma +20 to 50% Burn +40 to 80% Treatments Mech. Ventilation -25 to -35% Nutritional support +20% Agitation +50 to 100% Chiolero R, Nutrition 1997

Drugs Affecting Caloric Needs REE Change Opiates -9% Sedation -20 to -55% Barbiturates -32% Muscle relaxants -42% Catecholamines +32% β-blockers -6 to -7% +20% Agitation +50 to 100% Chiolero R, Nutrition 1997

Nutritional Requirements 3. Indirect calorimetry Gold standard for measuring REE Calculated by measuring O2 consumption (VO2) and CO2 production (VCO2) using the abbreviated Weir equation: REE = [3.9 (VO2) + 1.1 (VCO2)] x 1.44. Performs better than predictive equations with added stress factors Measurements made over 20-30 min and 24hr EE is extrapolated Results may become unreliable due to variations in ventilator settings, air leaks, high FiO2 (fraction of inspired oxygen), acid-base disturbances, intermittent feeding, diet-induced thermogenesis, absence of a quiet thermoneutral environment, pain, agitation.

Protein Requirements Non-Stressed: 0.8 -1 gm/kg/day Mild-Moderately Stressed: 1.2 - 1.5 gm/kg/day Severely Stressed - >1.5-2.5 gm/kg/day Lefor et al.Critical Care. 2004 Protein should comprise approximately 20% of the total calories during stress These are the protein requirement values and to emphasize this point - protein requirements for the critically ill or stressed patient should be approximately 20% of this Total Caloric Requirement.

Non-Protein Calories Carbohydrate Fats NPC combinations acute stress: 70% carbo 30% fat usual: 60% carbo 40% fat infections: 50% carbo 50% fat pulmonary: 40% carbo 60% fat The NPC or Non-Protein Calorie portion which are the carbohydrates and fat components of the Total Caloric Requirement will give the patient more or less what she/he needs in the different situations she/he is in.

Supplying Large Amounts of Carbohydrates Leads to Hyperglycemia Insulin resistance Impaired wound healing HYPERGLYCEMIA (Effects in stressed patients) Effects of hyperglycemia in stressed patient Increased risk of infection Immune dysregulation increased Macrophages and Neutrophils Increased risk of loss of LBM  Skeletal muscle proteolysis  Oxidative stress (proinflammatory)  Risk of infection Risk of LBM loss  Skeletal muscle proteolysis

Vitamins Fat Soluble Water Soluble Vitamin A Vitamin D Vitamin E Folic Acid Pantothenic Acid Biotin Niacin Riboflavin Vitamin E Vitamin K Thiamine Vitamin B6 Vitamin B12 Vitamin C

Electrolytes Sodium Potassium Chloride Calcium Phosphorus Magnesium Zinc Copper Chromium Manganese Selenium Iodine Iron

Fluid Requirements How much volume to give? Cater for maintenance & on going losses Normal maintenance requirements By body weight Alternatively, 30 to 50 ml/kg/day

Maintenance Water Requirements Children Adults 30 ml/kg/day Weight (kg) mL/kg/hr mL/kg/day 1 – 10 4 100 11 – 20 2 50 21 – n 1 20

Water losses Add on-going losses based on I/O chart Urine: 800 to 1500 ml/day Stool: 250 ml/day Consider insensible fluid losses also 8-12 ml/kg/day Cutaneous insensible losses increase by 10% for every 1°C above >37°C

Maintenance Water Requirements Change in Fluid Requirements Increased Decreased Fever Renal failure Fistulas Congestive heart failure Diarrhea Cirrhotic ascites NG suction Pulmonary disease

Clinical Decision Making Algorithm for Nutritional Support NUTRITIONAL ASSESSMENT Functioning GI Tract? YES NO Oral Formula Supplements ENTERAL NUTRITION PARENTERAL NUTRITION Tube feeding for more than 6 weeks? PN for more than 4 weeks? YES NO YES NO Enterostomy Nasoenteric Tube Central PN Peripheral PN Risk for pulmonary aspiration? GI FUNCTION RETURNS? YES NO YES NO NO YES Gastrostomy Nasoduodenal or Nasojejunal Tube Jejeunostomy Nasogastric Tube GI FUNCTION Progress to Total Enteral Feedings NORMAL COMPROMISED Standard Formula Specialty Formula PN Supplementation Inadequate FORMULA TOLERANCE Progress to More Complex Diet and Oral Feedings as Tolerated Adequate

Preferential Use of Enteral Nutrition EN delivery has two main routes: gastric and post-pyloric Use of the gut stimulates GALT & MALT → enhanced immune response Early feeding can trigger gut immunity and thereby improve outcomes McClave, J Clin Gastro, Sept 2002

Preferential Use of Enteral Nutrition Delay or failure may promote a proinflammatory state with ↑ disease severity & morbidity Early EN in the post-operative period is a viable option to address recuperation needs, malnutrition and its complications Reduce morbidity and cost compared with parenteral nutrition

Limitations Of EN Delivery Deranged motility Reduced exocrine pancreatic function Intestinal hypoperfusion/ bowel ischemia Gastric reflux Aspiration Nausea, vomiting Abdominal distention and cramps Diarrhea Malabsorption

Parenteral Nutrition Essential form of sustenance for patients who cannot tolerate the oral or tube feeding administered intravenously. Parenteral nutrition is administered partially or completely through venous access, using either a peripheral vein or central venous access.

Indications: Parenteral Nutrition General Indications Patients requiring long-term (>10 days) supplemental nutrition because they are unable to receive all of their daily energy, protein, and other nutrient requirements through oral or enteral feeding Severe gut dysfunction or inability to tolerate enteral feedings

Indications: Parenteral Nutrition Inability to use the gastrointestinal tract intestinal obstruction peritonitis intractable vomiting severe diarrhea high-output enterocutaneous fistula short bowel syndrome severe malabsorption. Need for bowel rest Palliative use in terminal patients is controversial Parenteral Nutrition provides nutritional and metabolic support to patients who cannot be adequately fed orally or via enteral tube feeding. In these patients, the gastrointestinal tract is either not functioning or cannot be used. Situations in which parenteral nutrition may be necessary include: intestinal obstruction peritonitis intractable vomiting severe diarrhea high-output enterocutaneous fistula short bowel syndrome severe malabsorption. In acute pancreatitis, parenteral nutrition can be used until adequate levels of enteral nutrition are reached or when enteral nutrition cannot be implemented. Parenteral nutrition is also used when bowel rest is necessary for a period of time. Parenteral nutrition is not appropriate for extending the life of a terminal patient, unless it is an exceptional situation, in which case it should be discussed with patient and/or family. ASPEN Board of Directors. JPEN 2002; 26 Suppl 1:83SA. ASPEN Board of Directors. JPEN 2002; 26 Suppl 1: 83SA

Composition of Formulas

Parenteral Access

Nutrition Care Plan Computed calorie and protein requirements based on disease, labs, current complications Determine form & route of feeding Type of feeding Oral Enteral - NGT, PEG, Surgical tubes Parenteral - peripheral, central Delivery method (pump or bolus)

Monitoring Metabolic Assessment Glucose Fluid and electrolyte balance Renal and hepatic function Triglycerides and cholesterol Assessment Body weight Nitrogen balance Plasma protein Parenteral nutritional monitoring is used to adjust the components of the formula as well as the frequency of monitoring according to laboratory results. As a general rule, metabolic control includes serial laboratory tests to detect possible problems such as electrolyte and fluid imbalance, hyper- or hypoglycemia, hepatic disorders, and triglyceride clearance problems. When these data are consistently within normal limits, the frequency of tests may be reduced. Nutritional monitoring also includes daily evaluation of body weight, and weekly nitrogen balance, plasma protein levels, and creatinine/height index. These tests are done regularly for patients receiving parenteral nutrition. Campbell SM, Bowers DF. Parenteral Nutrition. In: Handbook of Clinical Dietetics, The American Dietetic Association, 2nd ed. New Haven: Yale University Press. 1992; 148-165. Campbell SM, Bowers DF. Parenteral Nutrition. In: Handbook of Clinical Dietetics. Yale University Press, 1992

Monitoring FLUID BALANCES CALORIE COUNT

Dangers of Overfeeding Secretory diarrhea (with EN) Volume overload, CHF COCO2 production: ventilatory demand O2 consumption

Dangers of Overfeeding Electrolyte problems: PO4 , K, Mg Hyperglycemia, glycosuria, dehydration, lipogenesis, fatty liver, liver dysfunction Increased mortality (in adult studies)

Thank you for your attention.