Simple Machines Chapter 7-Part 2.

Slides:



Advertisements
Similar presentations
II. The Simple Machines (p )
Advertisements

Simple Machines.
Simple Machines and Mechanical Advantage
5.3 Simple Machines.
WARM UP Have book on desk & ready for book check
Chapter 5 Lesson 3.
Simple Machines.
“Work and Power”. A. Books in hand Demo B. Def – the product of force and distance 1. Not…a job, chores, school. 2. Formula: Work = Force x Distance 3.
Work, Power, and Machines
Types of Simple Machines
CHAPTER 8 MACHINES.
Simple machines and mechanisms Lesson 5.0 and 5.1 Pages
Work & Machines Chapter 5. Free Template from 2 Section 1: Work A.Work – transfer of energy that occurs when a force makes an object.
Chapter 5 Machines and Mechanical Systems. Forces in Machines How do you move something that is too heavy to carry? How were the pyramids built? Simple.
Machines. Work and Power Power is the rate at which work is done Power = Work time Remember that W = Fd So, Power = Fd t Power is measured in Watts –1.
Mouse Mischief. Yes No When a machine is used to do work, the force applied by the machine is called the effort force.
-a machine that does work with one movement
Lesson 2: Simple Machines
Simple Machines Device that makes doing work easier is a machine Machines increase applied force and/or change direction of applied force to make work.
Work and Machines Chapter 5 Sec 2. What is a Machine?  Any device that makes work easier.
Ch. 5 – Work & Machines I. Work Exerting a force over a certain distance;a form of energy(SI units = Joules)A. Work: 1. For work to be done an object must.
Section 2 Simple Machines.
Chapter 5 Work & Machines
CONSTRUCTIVE THOUGHTS Simple Machines 7.2. Six Types of Simple Machines leverpulley wheel and axle inclined plane screwwedge.
5.3 Simple Machines. 6 Types  Lever Pulley Wheel and axle  Inclined Plane Screw Wedge.
Work & Machines I.Scientific definition of Work: Work is done when a force applied to an object moves the object. forcedistance A.Work depends on two.
Lecture 21 Using Machines Ozgur Unal
Name ________________________________ Physical Science
Machine notes CP Physics Ms. Morrison.
6.3 – Simple Machines Guided notes.
Simple Machines.
Simple Machines 5.3 Physical Science.
Chapter 5 Work and Machines.
Ch. 6 Work and Machines.
Simple Machines.
Simple Machines 1 Effort Efficiency Mechanical Advantage WORK Force.
Machines Making Work Easier.
Chapter 14 Lesson 4 The Simple Machine.
Machine- a device that makes work easier by changing the direction or size of the force.
Chapter 5: Machines II. The Simple Machines Inclined Plane Lever Screw
Simple Machines. Types of Simple Machines How do machines make work easier? Machines make work easier by: multiplying the size of the force you exert.
Work and Machines. What is Work? Work is force times distance. To be exact, work is force times the distance moved in the direction of the force. The.
Physical Science Chapter 5 Work and Machines 1 Note to self: Find videos.
6.3 – Simple Machines.
Work, Power, and Machines Glencoe Chapter 5. A. Work is the transfer of energy that occurs when a force makes an object move. 1. For work to occur, an.
Chapter 5 Machines and Mechanical Systems. Forces in Machines How do you move something that is too heavy to carry? How were the pyramids built? Simple.
Test 6: Chapter 5 Work & Machines Honors Physical Science.
Simple Machines Chapter 5 Section 3.
Work and Machines Chapter 5. What machines do you use in your life to help you do some type of work?
Physical Chapter Seven Simple Machines Levers Pulleys Inclined Planes Screws Wheel & Axle Wedge Compound Machines.
Simple Machines W O R K M e c h a n i c a l A d v a n t a g e Force Effort E f f i c i e n c y 1.
Chapter 7 Review.
Simple Machines, Mechanical Advantage, and Work. Machines  Machines make work easier by changing direction of a force, multiplying a force, or increasing.
Types of Machines Levers Simple machine that has a bar that pivots at a fixed point This fixed point is called the fulcrum The load Input force 3 Types.
Chapter 15 Machines What is a simple machine? People use machines to make work easier They allow a person to -change the size of the force -change.
Simple Machines.
Work & Machines.
Work and Machines.
Work and Simple Machines
Advanced Physical Science Ms. Pollock
II. The Simple Machines (p )
MACHINES.
5.3—Simple Machines.
Chapter 6 – Work and Machines
MACHINE NOTES.
Machines.
Chapter 5 Lesson 3.
Machines.
Chapter 5, Section 3 Notes Simple Machines.
Machines.
Presentation transcript:

Simple Machines Chapter 7-Part 2

Pulleys Pulley A grooved wheel with a rope or a chain running along the groove.

Positioning Pulleys Fixed pulley Movable pulley Block and tackle Remember: MA (IMA) < 1 means the machine does not make work easier. MA = 1 does not make work easier. MA> 1 makes work easier Fixed pulley Attached to something that doesn’t move IMA = 1 so it does not multiply the effort force Movable pulley Not attached to a fixed point Multiplies the effort force IMA > 1 Block and tackle Fixed and movable pulleys combined to increase the mechanical advantage

Wheel and Axle A simple machine consisting of two wheels of different sizes that rotate together. Examples: doorknobs, faucets, ice cream makers IMA = radius of wheel = Rw radius of axle Ra Example: In an ice-cream freezer the wheel has a radius of 20 cm. The axle has a radius of 15 cm. What is the ideal mechanical advantage of the wheel and axle? Answer: 1.34

Inclined plane A ramp which is a sloping surface used to raise objects. IMA = Effort distance = length of slope = _l_ Resistance distance height of slope h The Pyramids Scientists disagree whether the pyramids were built using inclined planes or levers. They were most likely made using both of these simple machines.

Screw An inclined plane wrapped in a spiral around a cylindrical post. Wedge An inclined plane with one or two sloping sides Chisels, knives and axe blades

Compound Machines A combination of two or more machines. Examples: lawn mower, bicycle, axe

Gears Gears are modified wheels and axles. A wheel with teeth along its axles. Effort exerted on one of the gears causes the other gear to move.

Efficiency A measure of how much of the work put into a machine is changed to useful work put out by a machine. Efficiency = Wout x 100% = Fr x dr x 100% Win Fe x de Power is the rate at which work is done. If two people were pushing boxes of the same weight the same distance the one who finished it first would have exerted the most power. The amount of work is the same, the only difference is the speed at which the work is done. Power = work P = W time T

Homework Day 1: Read pp. 190-203 Day 2: Vocab. #5-8, 10. Day 3: Check.Conc: #5-7, 9. Day 4: Think. Crit. # 16 and 20 Day 5: Finish Lab #10 (as much as we covered in class) Take CH. 7 test. Due Date: EIE: Dec. 11th.

Study Sheet for CH. 7 test What is a simple machine? Know what 1st, 2nd and third class levers are and examples of each. Calculations for IMA and MA MA= resistance force = Fr effort force Fe IMA – length of effort arm = Le length of resistance are Lr Or for inclined plane: length of slope height of slope A screw and a wedge are examples of what? Go over the vocabulary words given at the end of the chapter. Go over the checking concepts questions.  Go over all the Thinking critically questions assigned in the last 2 weeks.