Giant Rabi splitting in metal/semiconductor nanohybrids

Slides:



Advertisements
Similar presentations
Opto-Electronics & Materials Laboratory Li-Jen Chou ( ) Investigations on low-dimensional nanostructures: synthesis, characterization, applications and.
Advertisements

A 10-a editie a Seminarului National de nanostiinta si nanotehnologie 18 mai 2011 Biblioteca Academiei Romane Tight-binding (TB) methods: Empirical Tight-binding.
Stefan Maier – Bath Complex Systems 2005 Towards a common description of dielectric and metallic cavities Stefan Maier Photonics and Photonic Materials.
Separation of neutral and charge modes in one dimensional chiral edge channels
Coherently induced ferromagnetism in Diluted Magnetic Semiconductors Southampton, OCES9-SCES2 September 7 st 2005 Joaquín Fernández-Rossier Dept. Física.
1 Special Properties of Au Nanocatalysts Maryam Ebrahimi Chem 750/7530 March 30 th, 2006.
Gold Nanorod Biosensors and Single Particle Spectroscopy Jason H. Hafner MURI site visit July 27, 2005.
Nanophotonics Class 8 Near-field optics.
Nanophotonics Class 2 Surface plasmon polaritons.
EXCITON-PLASMON COUPLING AND BIEXCITONIC NONLINEARITIES IN INDIVIDUAL CARBON NANOTUBES Igor Bondarev Physics Department North Carolina Central University.
PLMCN‘10 Bloch-Polaritons in Multiple Quantum Well Photonic Crystals David Goldberg 1, Lev I. Deych 1, Alexander Lisyansky 1, Zhou Shi 1, Vinod M. Menon.
ULTRAFAST CONTROL OF POLARITON STIMULATED SCATTERING IN SEMICONDUCTOR MICROCAVITIES Cornelius Grossmann1 G. Christmann, C. Coulson and J.J. Baumberg Nanophotonics.
Size-dependent recombination dynamics in ZnO nanowires
from Coupled Quantum Modes Tim Liew & Vincenzo Savona
PROBING THE BOGOLIUBOV EXCITATION SPECTRUM OF A POLARITON SUPERFLUID BY HETERODYNE FOUR-WAVE-MIXING SPECTROSCOPY Verena Kohnle, Yoan Leger, Maxime Richard,
01/09/ Subnanosecond spectral diffusion of a single quantum dot in a nanowire G. Sallen, A. Tribu, T. Aichele*, R. André, L. Besombes,
Phonon coupling to exciton complexes in single quantum dots D. Dufåker a, K. F. Karlsson a, V. Dimastrodonato b, L. Mereni b, P. O. Holtz a, B. E. Sernelius.
Lorenzo O. Mereni Valeria Dimastrodonato Gediminas Juska Robert J. Young Emanuele Pelucchi Physical properties of highly uniform InGaAs.
Polariton-polariton interaction constants M. Vladimirova S. Cronenberger D. Scalbert A. Miard, A. Lemaître J. Bloch A. V. Kavokin K. V. Kavokin G. Malpuech.
Current POLARITON LIGHT EMITTING DEVICES: RELAXATION DYNAMICS Simos Tsintzos Dept of Materials Sci. & Tech Microelectronics Group University of Crete /
Strong coupling between Tamm Plasmon and QW exciton
SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.
1 Mechanism for suppression of free exciton no-phonon emission in ZnO tetrapod nanostructures S. L. Chen 1), S.-K. Lee 1), D. Hongxing 2), Z. Chen 2),
Spatial coherence and vortices of polariton condensates
Bose-Einstein Condensation of Trapped Polaritons in a Microcavity Oleg L. Berman 1, Roman Ya. Kezerashvili 1, Yurii E. Lozovik 2, David W. Snoke 3, R.
Carrier and Phonon Dynamics in InN and its Nanostructures
From weak to strong coupling of quantum emitters in metallic nano-slit Bragg cavities Ronen Rapaport.
Beam manipulation via plasmonic structure Kwang Hee, Lee Photonic Systems Laboratory.
Lavinia P. Rajahram 18 th April 2014 NANO LASER. SHRINKING THE LASER!
Oligonucleotide-templated nanoparticle assembly Fiona McKenzie.
From individual to coupled metallic nanocavities Adi Salomon, Yehiam Prior Weizmann Institute of Science Radoslaw Kolkowski, Marcin Zielenski, Joseph Zyss.
Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity S. Varoutsis LPN Marcoussis S. Laurent, E. Viasnoff, P.
L. Besombes et al., PRL93, , 2004 Single exciton spectroscopy in a semimagnetic nanocrystal J. Fernández-Rossier Institute of Materials Science,
Surface Plasmon Resonance General Introduction Steffen Jockusch 07/15/07 Plasmons: - collective oscillations of the “free electron gas” density, often.
Fiona Beck Small Particles, Big Hopes: Absorption Enhancement in Silicon using Metallic Nanoparticles.
1 R. Bachelot H. Ibn-El-Ahrach 1, O. Soppera 2, A. Vial 1,A.-S. Grimault 1, G. Lérondel 1, J. Plain 1 and P. Royer 1 R. Bachelot, H. Ibn-El-Ahrach 1, O.
SURFACE PLASMON POLARITONS. SPPs Pioneering work of Ritchie (1957) Propagate along the surface of a conductor Trapped on the surface because of their.
1 Surface Enhanced Fluorescence Ellane J. Park Turro Group Meeting July 15, 2008.
Jacob B Khurgin Johns Hopkins University, Baltimore Greg Sun
L. Coolen, C.Schwob, A. Maître Institut des Nanosciences de Paris (Paris) Engineering Emission Properties with Plasmonic Structures B.Habert, F. Bigourdan,
Coupling of InGaN quantum-well photoluminescence to silver surface plasmons PRB, Vol 60, No 16, Pg Gontijo, M. Boroditsky, and E. Yablonovitch,UCLA.
Photochemistry And Photophysics Of Nanoparticles Brian Ellis.
Theory of Intersubband Antipolaritons Mauro F
Nanomaterials – Electronic Properties Keya Dharamvir.
Superradiance, Amplification, and Lasing of Terahertz Radiation in an Array of Graphene Plasmonic Nanocavities V. V. Popov, 1 O. V. Polischuk, 1 A. R.
EM scattering from semiconducting nanowires and nanocones Vadim Karagodsky  Enhanced Raman scattering from individual semiconductor nanocones and nanowires,
Photoabsorption of Ag Clusters in He Droplets: A Transition from Single- to Multi-Centered Growth 67 th International Symposium on Molecular Spectroscopy.
1 Controlling spontaneous emission J-J Greffet Laboratoire Charles Fabry Institut d’Optique, CNRS, Université Paris Sud Palaiseau (France)
Formation of Ge alloy nanocrystals embedded in silica Eugene E. Haller, University of California-Berkeley, DMR Ge-Au particles Above: Transmission.
Resonant medium: Up to four (Zn,Cd)Se quantum wells. Luminescence selection is possible with a variation of the Cd-content or the well width. The front.
Strong coupling between a metallic nanoparticle and a single molecule Andi Trügler and Ulrich Hohenester Institut für Physik, Univ. Graz
Full Spatio-Temporal Coherent Control on Nanoscale (NSF NIRT Grant CHE ) Mark Stockman 1, Keith Nelson 2, and Hrvoje Petek 3 1 Department of Physics.
Chapter 1 Introduction 1.1 Classification of optical processes Reflection Propagation Transmission Optical medium refractive index n( ) = c / v ( )
Formation of Ge alloy nanocrystals embedded in silica Eugene E. Haller, University of California-Berkeley, DMR Above: High-angle annular dark field.
Cavity soliton switching and pattern formation in an optically-pumped vertical-cavity semiconductor amplifier Laboratoire de Photonique et de Nanostructures.
Spring Celebration Donald Lucas, Ph.D. Profs. Cathy Koshland (PI), Lydia Sohn, Peidong Yang, and John Arnold Nanotechnology-Based Environmental.
Nonlinear Optical Response of Nanocavities in Thin Metal Films Yehiam Prior Department of Chemical Physics Weizmann Institute of Science With Adi Salomon.
Computational Nanophotonics Stephen K. Gray Chemistry Division Argonne National Laboratory Argonne, IL Tel:
Alberto Amo, C. Adrados, J. Lefrère, E. Giacobino, A. Bramati
Nanolithography Using Bow-tie Nanoantennas Rouin Farshchi EE235 4/18/07 Sundaramurthy et. al., Nano Letters, (2006)
Hybrid states of Tamm plasmons and exciton-polaritons M Kaliteevski, S Brand, R A Abram, I Iorsh, A V Kavokin, T C H Liew and I A Shelykh.
NIRT: Semiconductor nanostructures and photonic crystal microcavities for quantum information processing at terahertz frequencies M. S. Sherwin and P.
A brief overview of Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells V.E. Ferry, L.A. Sweatlock, D. Pacifici, and H.A. Atwater,
Anomalous magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals magnetized Co/Pt films on two-dimensional.
Plasmonic waveguide filters with nanodisk resonators
High Performance Computing in materials science from the semiempirical approaches to the many-body calculations Fabio Trani Laboratoire de Physique de.
Terahertz Spectroscopy of CdSe Quantum Dots
Strong Coupling between Molecules and Plasmonic Nanostructures
Xi Bin, Xu Hao, Xiao Shiyi, Hao Jiaming and Zhou Lei
PLASMONICS AND ITS APPLICATIONS BY RENJITH MATHEW ROY. From classical fountations to its modern applications
Presentation transcript:

Giant Rabi splitting in metal/semiconductor nanohybrids J. Bellessa, C. Symonds, J.C. Plenet, A. Lemaitre, K. Vinck, D. Felbacq Laboratoire de Physique de la Matière Condensée et Nanostructure, Lyon, France Laboratoire de Photonique et Nanostructures, Marcoussis, France Groupement d’Etude des Semiconducteurs, Montpellier, France

Outline Properties of surface plasmons Description of surface plasmons Plasmons in strong coupling Hybridisation localised plasmon/exciton Localised plasmon in nanodisks Nanodisks with organic semiconductor Particularities of the hybrid states Inhomogeneous broadenings Geometrical effects Conclusion

Surface plasmon Interface metal / dielectric material Properties of surface plasmons Surface plasmon Interface metal / dielectric material Dielectric Metal 100nm 20nm W. L. Barnes et al., Nature, 418, 306 (2002) 2D 1D plasmon guide 0D nanoparticules Damping in the metal

Delocalised plasmon in strong coupling Properties of surface plasmons Delocalised plasmon in strong coupling Weak coupling : Luminescence enhancement with nanoantennas D.E. Gomez et al. Nano Lett. 10 274 (2010) Strong interaction between plasmons and : Aggregated dyes Laser dyes such as Rhodamine 6G Semiconductor nanocrystals arrays : CdSe dots under a thin silver film Rabi splitting of 112 meV T.K. Hakala et al. PRL 103 053602 (2009) J. Bellessa, C. Bonnand, J.C. Plenet, J. Mugnier., PRL 93, 36404 (2004)

Plasmon in strong coupling Properties of surface plasmons Plasmon in strong coupling Plasmons in nanoshells Metallic nanostructures Holes and voids in metallic structures GOLD N. T. Fofang et al. Nanoletters 8 10 3481 (2008) J. Dintinger et al. Phys. Rev. B 71, 035424 (2005) Y. Sugawara et al. PRL 97, 266808 (2006)

Localised plasmons Discrete Plasmon resonance Hybridisation localised plasmon/exciton Localised plasmons Ag Nanodisks control of the environment and size Discrete Plasmon resonance Distance between the disks 200nm Low inhomogeneous broadening 300nm

Bare plasmon resonances Hybridisation localised plasmon/exciton Bare plasmon resonances Transmission of nanodisks Plasmon resonances energy : size dependant linewidth 150meV No plasmon overlapping

Nanodisks with TDBC Nanodisks covered with a TDBC layer Hybridisation localised plasmon/exciton Nanodisks with TDBC Nanodisks covered with a TDBC layer 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Absorption (a. u.) Transmission Energy (eV) 121 nm 143 nm 111 nm (b) (a) Three transmission dips TDBC absorption two size dependant dips Uncoupled regions Bare TDBC

Two levels model Formation of localised plasmon/ exciton mixed states Hybridisation localised plasmon/exciton Two levels model Formation of localised plasmon/ exciton mixed states Eplasmon Eexciton ħW

Formation of polaritons Hybridisation localised plasmon/exciton Formation of polaritons Rabi splitting depends on TDBC thickness FDTD simulations Rabi energy 450meV 20% of the transition energy 1 TDBC layer 2 TDBC layers (b) Nanodisk diameter (nm) 100 120 140 160 180 200 220 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 Energy (eV) 2.5 2.4 2.3 2.2 2.1 450meV Energy (eV) 2.0 1.9 1.8 1.7 1.6 100 120 140 160 180 200 220 Nanodisk diameter (nm) J. Bellesa et al. Phys. Rev. B 80, 33303 (2009)

Homogeneous and inhomogeneous broadenings Particularities of the hybrid states Homogeneous and inhomogeneous broadenings In microcavities In nanoparticles N photon Excitons N. F. Fofang et al. Nanolett. 2008, 8 (10), 3481 N ? exciton plasmons ERabi<ginhomogène Strong coupling

Distance between disks Particularities of the hybrid states Distance between disks Large modification of the bare plasmons Diffractive effects Rabi energy roughly unchanged

Conclusion Localized plasmon/exciton hybridization Rabi splitting of 450 meV (20% transition energy) Model system for cylindrical nanoparticles with controlled size and environment