Phonon coupling to exciton complexes in single quantum dots D. Dufåker a, K. F. Karlsson a, V. Dimastrodonato b, L. Mereni b, P. O. Holtz a, B. E. Sernelius.

Slides:



Advertisements
Similar presentations
Neutron-induced Reactions
Advertisements

Multiplication X 1 1 x 1 = 1 2 x 1 = 2 3 x 1 = 3 4 x 1 = 4 5 x 1 = 5 6 x 1 = 6 7 x 1 = 7 8 x 1 = 8 9 x 1 = 9 10 x 1 = x 1 = x 1 = 12 X 2 1.
Division ÷ 1 1 ÷ 1 = 1 2 ÷ 1 = 2 3 ÷ 1 = 3 4 ÷ 1 = 4 5 ÷ 1 = 5 6 ÷ 1 = 6 7 ÷ 1 = 7 8 ÷ 1 = 8 9 ÷ 1 = 9 10 ÷ 1 = ÷ 1 = ÷ 1 = 12 ÷ 2 2 ÷ 2 =
1 1  1 =.
1  1 =.
Tuning eigenstate-energies of InGaAs Quantum-Dots using lateral electric fields W. Prestel, H. Krenner, J. J. Finley St. Petersburg – JASS 2004.
PART IV: EPITAXIAL SEMICONDUCTOR NANOSTRUCTURES  Properties of low-dimensional quantum confined semiconductor nanostructures  Fabrication techniques.
EXCITON-PLASMON COUPLING AND BIEXCITONIC NONLINEARITIES IN INDIVIDUAL CARBON NANOTUBES Igor Bondarev Physics Department North Carolina Central University.
ULTRAFAST CONTROL OF POLARITON STIMULATED SCATTERING IN SEMICONDUCTOR MICROCAVITIES Cornelius Grossmann1 G. Christmann, C. Coulson and J.J. Baumberg Nanophotonics.
PROBING THE BOGOLIUBOV EXCITATION SPECTRUM OF A POLARITON SUPERFLUID BY HETERODYNE FOUR-WAVE-MIXING SPECTROSCOPY Verena Kohnle, Yoan Leger, Maxime Richard,
01/09/ Subnanosecond spectral diffusion of a single quantum dot in a nanowire G. Sallen, A. Tribu, T. Aichele*, R. André, L. Besombes,
Lorenzo O. Mereni Valeria Dimastrodonato Gediminas Juska Robert J. Young Emanuele Pelucchi Physical properties of highly uniform InGaAs.
Current POLARITON LIGHT EMITTING DEVICES: RELAXATION DYNAMICS Simos Tsintzos Dept of Materials Sci. & Tech Microelectronics Group University of Crete /
Strong coupling between Tamm Plasmon and QW exciton
Giant Rabi splitting in metal/semiconductor nanohybrids
SPECTRAL AND DISTANCE CONTROL OF QUANTUM DOTS TO PLASMONIC NANOPARTICLES INTERACTIONS P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, P. Royer ICD/UTT.
1 Mechanism for suppression of free exciton no-phonon emission in ZnO tetrapod nanostructures S. L. Chen 1), S.-K. Lee 1), D. Hongxing 2), Z. Chen 2),
Spatial coherence and vortices of polariton condensates
Influence of gate capacitance on CNTFET performance using Monte Carlo simulation H. Cazin d'Honincthun, S. Retailleau, A. Bournel, P. Dollfus, J.P. Bourgoin*
Experimental Characterization of the He + I 35 Cl(E,v † =11,12) and He + I 35 Cl( ,v † =0-2) Intermolecular Potential Energy Surfaces Joshua P. Darr and.
PRESENTED BY: PROF. S. Y. MENSAH F.A.A.S; F.G.A.A.S UNIVERSITY OF CAPE COAST, GHANA.
Biexciton-Exciton Cascades in Graphene Quantum Dots CAP 2014, Sudbury Isil Ozfidan I.Ozfidan, M. Korkusinski,A.D.Guclu,J.McGuire and P.Hawrylak, PRB89,
The physics of blue lasers, solar cells, and stop lights Paul Kent University of Cincinnati & ORNL.
Single electron Transport in diluted magnetic semiconductor quantum dots Department of Applied Physics, U. Alicante SPAIN Material Science Institute of.
Technion – Israel Institute of Technology, Physics Department and Solid State Institute Entangled Photon Pairs from Semiconductor Quantum Dots Nikolay.
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
1. INTRODUCTION: QD MOLECULES Growth Direction VERTICAL MOLECULES LATERAL MOLECULES e-h+e-h+ 1. Electron states coupling (e - Tunneling ) 2. Hole states.
Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity S. Varoutsis LPN Marcoussis S. Laurent, E. Viasnoff, P.
David Gershoni The Physics Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel and Joint Quantum Institute, NIST and University of.
L. Besombes et al., PRL93, , 2004 Single exciton spectroscopy in a semimagnetic nanocrystal J. Fernández-Rossier Institute of Materials Science,
“Quantum computation with quantum dots and terahertz cavity quantum electrodynamics” Sherwin, et al. Phys. Rev A. 60, 3508 (1999) Norm Moulton LPS.
L.Besombes Y.Leger H. Boukari D.Ferrand H.Mariette J. Fernandez- Rossier CEA-CNRS team « Nanophysique et Semi-conducteurs » Institut Néel, CNRS Grenoble,
A. Abdi, T. B. Hoang, S. Mackowski, L. M. Smith and H. E. Jackson Department of Physics, University of Cincinnati, Ohio J. M. Yarrison-Rice.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Modeling of Energy States of Carriers in Quantum Dots
Quantum Dots in Photonic Structures
ITOH Lab. Hiroaki SAWADA
Solar Cells, Sluggish Capacitance, and a Puzzling Observation Tim Gfroerer Davidson College, Davidson, NC with Mark Wanlass National Renewable Energy Lab,
Photoluminescence and lasing in a high-quality T-shaped quantum wires M. Yoshita, Y. Hayamizu, Y. Takahashi, H. Itoh, and H. Akiyama Institute for Solid.
InAs on GaAs self assembled Quantum Dots By KH. Zakeri sharif University of technology, Spring 2003.
1 Organic LEDs – part 8 Exciton Dynamics in Disordered Organic Thin Films Quantum Dot LEDs Handout on QD-LEDs: Coe et al., Nature 420, 800 (2002). April.
Theory of Intersubband Antipolaritons Mauro F
Tzveta Apostolova Institute for Nuclear Research and Nuclear Energy,
Charge Carrier Related Nonlinearities
Nanomaterials – Electronic Properties Keya Dharamvir.
Technion – Israel Institute of Technology Physics Department and Solid State Institute Eilon Poem, Stanislav Khatsevich, Yael Benny, Illia Marderfeld and.
1 P. Huai, Feb. 18, 2005 Electron PhononPhoton Light-Electron Interaction Semiclassical: Dipole Interaction + Maxwell Equation Quantum: Electron-Photon.
Observation of Excited Biexciton States in CuCl Quantum Dots : Control of the Quantum Dot Energy by a Photon Itoh Lab. Hiroaki SAWADA Michio IKEZAWA and.
Exciton and Biexciton Energies in GaN/AlN Quantum Dots G. Hönig, A. Schliwa, D. Bimberg, A. Hoffmann Teilprojekt A5 Institut für Festkörperphysik Technische.
Absorption Spectra of Nano-particles
Size dependence of confined acoustic phonons in CuCl nanocrystals Itoh lab Takanobu Yamazaki Itoh lab Takanobu Yamazaki J. Zhao and Y. Masumoto, Phys.
Ordered Quantum Wire and Quantum Dot Heterostructures Grown on Patterned Substrates Eli Kapon Laboratory of Physics of Nanostructures Swiss Federal Institute.
Micro-optical studies of optical properties and electronic states of ridge quantum wire lasers Presented at Department of Physics, Graduate.
Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P.
Temperature behaviour of threshold on broad area Quantum Dot-in-a-Well laser diodes By: Bhavin Bijlani.
Resonant medium: Up to four (Zn,Cd)Se quantum wells. Luminescence selection is possible with a variation of the Cd-content or the well width. The front.
Slide # 1 Variation of PL with temperature and doping With increase in temperature: –Lattice spacing increases so bandgap reduces, peak shift to higher.
Cold Melting of Solid Electron Phases in Quantum Dots M. Rontani, G. Goldoni INFM-S3, Modena, Italy phase diagram correlation in quantum dots configuration.
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
Topics ACOPhys “Opening Week” Get-together by examples 1.) Organic Optoelectronics 2.) Electronic Structure of Organic Materials 3.) Plastic Solar Cell.
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
NIRT: Semiconductor nanostructures and photonic crystal microcavities for quantum information processing at terahertz frequencies M. S. Sherwin and P.
Conclusion QDs embedded in micropillars are fabricated by MOCVD and FIB post milling processes with the final quality factor about Coupling of single.
Flat Band Nanostructures Vito Scarola
1 August 27, 2012 Tailoring Light-Matter Interaction in Nanophotonic Environments Petru Tighineanu Quantum Photonics group.
Tunable excitons in gated graphene systems
Excitons in Excited States in a Quantum Well
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
Magnetic control of light-matter coupling for a single quantum dot embedded in a microcavity Qijun Ren1, Jian Lu1, H. H. Tan2, Shan Wu3, Liaoxin Sun1,
Project 1.4: Hydrogenation of dilute nitrides for single photon emitters in photonic crystals Saeed Younis.
Presentation transcript:

Phonon coupling to exciton complexes in single quantum dots D. Dufåker a, K. F. Karlsson a, V. Dimastrodonato b, L. Mereni b, P. O. Holtz a, B. E. Sernelius a, and E. Pelucchi b a IFM Semiconductor materials, Linköping University, Sweden b Tyndall National Institute, University College Cork, Ireland The 11th edition of the international conference PLMCN: Physics of Light-Matter Coupling in Nanostructures Cuernavaca (Mexico), April, 2010

Outline Introduction to Pyramidal QDs Introduction to LO-phonon coupling Experimental results Interpretation/Computational results Conclusions

Pyramidal QDs InGaAs QDs in AlGaAs barriers Patterned GaAs substrate (111)B G. Biasiol et al., PRL 81, 2962 (1998); Phys. Rev. B 65, (2002) self-limiting profile growth anisotropy capilarity effects alloy segregation A. Hartmann PRL (2000) GaAs AlGaAs Barrier InGaAs QD MOCVD

Pyramidal QDs Simplified model AlGaAs layer 30 % Al InGaAs layer 15 % In InGaAs QD 15 % Surrounding AlGaAs Barrier % AlGaAs VQWR 1 4 % 1 Q. Zhu el al., Nano Lett (2006)

Pyramidal QDs Efficient light extraction >120 kcnts/sec Site-controlled, isolated QDs C 3v -symmetry – emitters of entangled photons 1 1 R. Singh et al., PRL (2009); K. F. Karlsson el al., PRB Accepted (R) (2010); A. Schliwa et al., PRB R (2009); A. Mohan et al., Nature Phot. 2 (2010) Designed with excited electron levels (x2) s (x4) p (x2) s 2X X Vac C 3v

Pyramidal QDs Control of charge population by excitation conditions 1 1 A. Hartmann PRL (2000) Normalized PL Intensity QD2

LO-phonon coupling Coupling of LO-phonons with excitons is electric (Fröhlich) The total coupling is given by the difference between the couplings of electrons and holes An exciton formed by an electron-hole pair is a neutral entitiy Equal probability density function of electrons and holes  vanishing coupling In real systems: electrons and holes have different charge distribution Side view Top view Gray:Quantum dot profile Red: Hole probability density (10% of max) Blue:Electron probablity density (10% of max) Side view Charge distribution Charge density

LO-phonon coupling Excitation spectrum T = 0 K No spectral linewidth Dispersion less phonon branch Huang-Rhys parameter S 0-phonon 1-phonon 2-phonon Energy ħ  LO 0-phonon 1-phonon 2-phonon Energy Emission spectrum ħ  LO

LO-phonon coupling Ensemble measurements InAs/GaAs QDs S ~ R. Heitz et al., PRL (1999) Single CdSe/ZnCdSe QD (X, 2X) S ~0.035, F. Gindele et al., PRB R (1999) P. Hawrylak et al., PRL (2000) Single InAs/GaAs QDs, PL-excitation spectroscopy

LO-phonon coupling Extra charge? Spherical GaAs microcrystallities (r>11 nm) S enhanced from to 0.01 by an extra charge Nomura & Kobayashi PRB (1992) PRL (2000) PL-excitation spectroscopy InAs/GaAs QDs

Experimental results X X+X+ XX 2X  1000 XX X X2X2 X2X2 Direct emission Phonon replicas (1 st order) T=4K QD1

Experimental results QD1 Replica of X + significantly weaker than X and X - Replica of X - similar strength as replica of X LO-phonon energy 36.4  0.1 meV Larger spectral linewidth of replicas

Experimental results Measured Huang-Rhys Parameter 17 QDs

Computations Excitonic ground states computed self-consistently by 8  8 band k  p theory in Hartree approximation Strain induced deformation potentials simulated by continuum elastic theory

Computations X X+X+ XX 2X Charge density (e/nm 3 ) Real space maps Huang-Rhys parameters S  1000

Interpretation XX+X+ Side Top Repulsion  Delocalization Attraction  Localization Coulomb interactions induces changes in the charge distribution; different exciton complexes have different charge distributions J. J. Finley et al., PRB R (2004)

Computations   initial Charge density (e/nm 3 ) X X+X+ XX 2X Integrated diagonal phonon scattering matrix elements relative X Strong phonon coupling for an exciton comples does not imply strong phonon replicas.

Interpretation Measured LO-phonon energy: 36.4  0.1 meV (GaAs bulk: ~36.6 meV) VQWR (4% Al) ħ  LO = 36.4 meV Surrounding barrier (20-30% Al) ħ  LO = meV GaAs-like LO-phonon energy in AlGaAs 0  4%:  E  -0.2 meV

Interpretation Spectral linewidth Bulk-like LO-phonon dispersion  broadening < 50  eV GaAs LO-phonon lifetime  broadening ~ 70  eV 1 Composition variations and alloys disorder 2 1 M. Canonico PRL (2002) 2 B. Jusserand PRB (1981)

Comparison of phonon replicas of charged and neutral exciton complexes. S = – X+X+ X Coulomb induced charge cancellation of an electron- hole pair Extra positive charge may result in strongly reduced phonon replicas due to the heavier mass of the hole X + : Strongest LO-phonon scattering matrix element and simultaneously the weakest phonon replicas Adiabatic independent-phonon model yield values of the Huang-Rhys parameter in agreement with experiments Conclusions