Download presentation

1
**Neutron-induced Reactions**

X(n,b)Y b(Q+En) n(En) Probability to penetrate the potential barrier Po(Ethermal) = 1 P>o(Ethermal) = 0 For thermal neutrons Q >> En b(Q) constant Non-resonant Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

2
**Neutron-induced Reactions**

Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

3
**Nuclear and Radiation Physics, BAU, 1st Semester, 2006-2007 (Saed Dababneh).**

4
**Neutron-induced Reactions**

n-TOF CERN Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

5
**Nuclear and Radiation Physics, BAU, 1st Semester, 2006-2007 (Saed Dababneh).**

6
**Neutron-induced Reactions**

n_TOF CERN Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

7
**Neutron-induced Reactions**

Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

8
**Charged Particle Reactions**

What is the Gamow Peak? Nuclear Radius Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

9
**Charged Particle Reactions**

Electron Screening Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

10
**Charged Particle Reactions**

e2 = 1.44x10-12 keV.m Tunneling probability: In numerical units: For -ray emission: Sommerfeld parameter Gamow factor Multipolarity Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

11
**Charged Particle Reactions**

Nuclear (or astrophysical) S-factor Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

12
**Charged Particle Reactions**

EC = ?? Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

13
**Resonance Reactions E t**

CN particle emission E E > spacing between virtual states continuum. (Lower part larger spacing isolated resonances). D bound states -emission E isolated states. Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

14
**Resonance Reactions a + X Y + b Q > 0 b + Y X + a Q < 0**

J Ex a + X Y + b Q > 0 b + Y X + a Q < 0 Excited State Entrance Channel a + X Exit Channel b + Y Inverse Reaction Compound Nucleus C* Identical particles Nature of force(s). Time-reversal invariance. Statistical Factor () QM HW 30 Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

15
**(selected energies with large X-section)**

Resonance Reactions Projectile Projectile Target Target Q-value Q-value Q + ER = Er E = E + Q - Eex Direct Capture (all energies) Resonant Capture (selected energies with large X-section) Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

16
**Nuclear and Radiation Physics, BAU, 1st Semester, 2006-2007 (Saed Dababneh).**

17
**Resonance Reactions HW 31**

Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

18
**Resonance Reactions Damped Oscillator Oscillator strength Damping**

factor eigenfrequency Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

19
**Resonance Reactions Breit-Wigner formula All quantities in CM system**

Only for isolated resonances. Reaction Elastic scattering Usually a >> b. HW 32 When does R take its maximum value? Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

20
**Resonance Reactions Ja + JX + l = J (-1)l (Ja) (JX) = (J)**

Exit Channel b + Y Ja + JX + l = J (-1)l (Ja) (JX) = (J) (-1)l = (J) Natural parity. J Ex Excited State Entrance Channel a + X Compound Nucleus C* Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

21
**radiative capture (a,)**

Resonance Reactions What is the “Resonance Strength” …? What is its significance? In what units is it measured? Charged particle radiative capture (a,) (What about neutrons?) Cross section EC a Energy Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

22
**Resonance Reactions 14N(p,) HW 33 Huge challenge to experimentalists**

Q = ?? EC = ?? ER = 2.0 MeV Formation via s-wave protons, J = ½, p = 0.1 MeV, dipole radiation E = 9.3 MeV, = 1 eV. Show that = 0.33 eV. If same resonance but at ER = 10 keV p = ?? E = ?? = ?? Show that = 3.3x10-23 eV. Huge challenge to experimentalists Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

23
**Resonance J Estimated**

-transfer reactions Angular distribution Resonance J Estimated Energy (keV) (eV) Experimental upper limit < 1.7 eV 18O(, )22Ne Nuclear and Radiation Physics, BAU, 1st Semester, (Saed Dababneh).

Similar presentations

OK

BT Wholesale October 2006 www.btwholesale.com 1 Creating your own telephone network WHOLESALE CALLS LINE ASSOCIATED.

BT Wholesale October 2006 www.btwholesale.com 1 Creating your own telephone network WHOLESALE CALLS LINE ASSOCIATED.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google