Design and Fabrication 1202

Slides:



Advertisements
Similar presentations
Basic Principles of GMP
Advertisements

Quality control tools
Requirements Engineering Processes – 2
Inquiry-Based Instruction
WHAT IS ENGINEERING? © 2002 MIT PSDAM LAB. root of the word... ENGINEER © 2002 MIT PSDAM LAB.
Objectives To introduce software project management and to describe its distinctive characteristics To discuss project planning and the planning process.
SADC Course in Statistics Producing a product portfolio Module I3 Session
Innovative Applications of Technology in Engineering - Part 1
Configuration management
Quality Assurance/Quality Control Plan Evaluation February 16, 2005.
Target Costing If you cannot find the time to do it right, how will you find the time to do it over?
SituationGantt Chart Brainstorm:Design Brief Page 1 GCSE Product DesignYour NameCandidate Number.
Steps of a Design Brief V Design Brief  Problem, identification, and definition Establish a clear idea of what is to be accomplished. Identify.
Lumberton High School Sci Vis I V105.02
The Design Process Where do consumer products begin?
Ideation and the Engineering Design Process Copyright © Texas Education Agency, All rights reserved. 1 Engineering Design and Presentation.
Design & Fabrication 1201 Unit 1 Overview. Unit 1 – 5 Topics Topic 1: History of Design (1 hour) – SCO Topic 2: The Design Process (4 hours) – SCO.
The Engineering Profession
Concepts of Engineering and Technology
PROBLEM SOLVING & SYSTEMS. Problem Solving –Humans have always needed food, clothing, shelter and healthcare. –Early humans lived in caves and ate fruits.
Ideation and the Engineering Design Process
ES305: Virtual Tools in Engineering Design: The Eng. Design Process James Carroll, Associate Professor Electrical and Computer Engineering.
Problem Solving Unit 2. Problem Solving 1. Define the problem – What is the problem? 2. Generate possible solutions – What are some things I can do to.
Bellwork How are science and technology related? Explain your answer using at least three sentences and give at least one example how they are related.
EDSGN 100Joshua Markle Section 004Calbert Chuderewicz Dr. Thomas ColledgeDavid Church David Hughes.
Engineering or Mechanical Engineering?
Design and Fabrication 1212 Unit 1- Introduction to Design (10 hrs)
Unit 2: Engineering Design Process
Prototyping: “The Design Process”. The Problem The design process begins when a solution to a problem is needed. At other times the engineer may change.
Bell Ringer Activity Signed safety wavers can go on my desk. Summative supply check next class (14 points). Singed Safety Waver Binder 50 Sheets of Notebook.
Science Fair Information. The purpose of the Science Fair is to offer students the opportunity to think deeply about science as it applies to everyday.
Workshop Designing a Batteryless Cell Phone Introduction Dr. Farid Farahmand 9/26/2006.
The Scientific Method & The Engineering Design Process … and the Car Challenge.
Design Process Future NASA Spacecrafts. Objectives Students will demonstrate how the Design Process is used to research, develop, test, and redesign a.
Bell Ringer Complete the Introduction to Technology Worksheet 1. Please finish answering the questions on the introduction worksheet. If you finish early.
Problem Solving Uxbridge High School Engineering Design Process AKA.
October 21, 2009 DRILL Write each question and answer. 1.What is another term for a limit to the design process? 2.What are used to evaluate an engineer’s.
The E ngineering Design Process Advanced Design Applications The E ngineering Design Process Teacher Resource – The First Five Days: Day 2 © 2014 International.
The Design Process.
Science Fair Information. The purpose of the Science Fair is to offer students the opportunity to think deeply about science as it applies to everyday.
Livingston High School
November 4, 2010 DRILL Write each question and answer. 1.What is another term for a limit to the design process? 2.What are used to evaluate an engineer’s.
Lecture 2. An Overview of Engineering Design JANUARY 2016 GE105 Introduction to Engineering Design College of Engineering King Saud University.
U3a-L2 October 20, 2009 DRILL Write in complete sentences. For #3-5, use the words below. Define engineering. What are the seven resources used to create.
The Engineering Design Process
Copyright © by The McGraw-Hill Companies, Inc. All rights reserved.Chapter 1 Introduction to Technology and Engineering.
Product Development Chapter 12. Vocabulary Research and development (R&D): the process of gathering information and using that information to develop.
Science Fair Information.
An Overview of Engineering Design
Design and modeling 10 step design process
Ten-Stage Design Process
INTRODUCTION TO MANUFACTURING
The Engineering Profession
Ten-Stage Design Process
Introduction to New Product Development (Portfolio)
Technology: The Human-Designed World
A Design Process Principles Of Engineering
The Design Process What Is Design? What Is a Design Process?
Technology: The Human-Designed World
اخلاق مهندسي مهدي بهادري نژاد استاد مهندسي مکانيک-دانشگاه صنعتي شريف و عضو پيوسته فرهنگستان علوم جمهوري اسلامي ايران متن سخنان ايراد شده در جلسه انجمن.
Chapter 2 The Process of Design.
A Design Process.
A Design Process BW: What are the steps of the Design Process????? No Google! Do you have a lock????? What’s the combo?
An Overview of Engineering Design
A Design Process.
Faerie House Assemblage
Concepts of Engineering and Technology
Engineering Design Process
An Overview of Engineering Design
The Engineering Profession
Presentation transcript:

Design and Fabrication 1202 Unit 1- Introduction to Design (10 hrs)

Unit 1: Introduction Topic 1-1: History of Design (1 hour) Topic 1-2: The Design Process (4 hours) Topic 1-3: Social/Environmental Considerations (2 hours) Topic 1-4: Design in Fabrication (2 hours) Topic 1-5: Careers in Design (1 hour) This unit introduces students to the engineering design process and provides the basis for the remaining units. Students will review the history of the design process and examine how it has evolved. You will also examine various fabrication techniques and discover how design and fabrication are interrelated.

Unit 1- Introduction to Design (10 hrs) Topic 1 – History of Design

Topic 1 – History of Design The history of engineering can be roughly divided into four overlapping phases, each marked by a revolution: 1. Pre-scientific revolution: The prehistory of modern engineering features ancient master builders such as Leonardo da Vinci. 2. Industrial revolution: From the 18th through early 19th century, civil and mechanical engineers changed from artists to scientific professionals. 3. Second industrial revolution: In the century before WW II, science-based engineering branches developed electricity, telecommunications, cars, airplanes, and mass production. 4. Information revolution: As engineering science matured after the war, microelectronics, computers, and telecommunications jointly produced information technology. *See Handout LRS-U1-T1-1: Chronology of Design

The Design Process has evolved from an informal approach to a formal approach to one with defined steps and procedures. Italian architect, Filippo Brunelleschi (1377-1446), is attributed with creating the first formal approach to the Design Process! Around the year 1400, he won a prestigious opportunity to design and build the dome of the "new" cathedral for the city of Florence. Brunelleschi was worried, however, that his contemporaries would try to steal his ideas, so to keep it secret he did something new. Brunelleschi kept a journal in which he sketched and described individual ideas. He distributed them to the various manufacturers. He then evaluated the concepts, blending some together and discarding others altogether. Finally he completed the dome. Brunelleschi had unwittingly invented a design process. *See Handout: An Extremely Abbreviated History of Engineering Design

The design process has expanded into a multidiscipline approach that relies on people with varied disciplines and backgrounds. Think about the following product: How many people does it take to develop it? Who are the various stakeholders? Consider the disciplines of engineering, manufacturing, purchasing, marketing, and sales.

Greatest Designs of the 20th Century Explore the National Academy of Engineering’s list of the top 20 achievements 11.     Highways 12. Spacecraft 13. Internet 14. Imaging 15. Household Appliances 16. Health Technologies 17. Petroleum 18. Laser and Fiber Optics 19. Nuclear Technologies 20. High-performance Materials 1   Electricity 2 Automobile 3 Airplane 4 Water Supply and Distribution 5. Electronics 6. Radio and Television 7. Agricultural Mechanization 8. Computers 9. Telephone 10. Air Conditioning / Refrigeration          How many of the 20th century's greatest engineering achievements will you use today? Why have these designs stood the test of time? Which of today’s designs do you think will remain significant in the future?

There are many historically noteworthy inventions and designs throughout history. Watch the following two videos and consider the impact of design and Inventions on the civilization Video 1: Roman Inventions (6:11) Video 2: Inventions and Industry (4:11) Can you determine some other significant designs and Inventions throughout history?

Roman Inventions Paved roads Aquaducts Cement Taxes/census New York: Inventions and Industry Railroads Electricity Steel Unions/strikes

Unit 1- Introduction to Design (10 hrs) Topic 2 – The Design Process

The Design Process, is a methodology that can facilitate technological problem-solving. It is an iterative process that begins with an identified need or opportunity and progresses through a series of pre-defined steps to a final implemented solution. *See Handout LRS-U1-T2-1: The Design Process

The Steps

Before you begin Opportunities (Need Identification) Engineering design activity always occurs in response to a human need. Before you can develop a problem definition statement for a design problem, you need to recognize the need for a new product, system, or machine.

Step 1 - The Design Brief A critical step in design is to define the problem by identifying the design objectives or goals. For each objective, criteria that quantify or qualify the design objective must be assigned. A Table may be used to for organization

Step 2 - Investigative Research Before you can go further in the design process, you need to collect all the information available that relates to the problem. Consider the following: Suitable materials for your project. Safety factors related to your design problem. Write letters to manufacturers / shops. Research using the library, Internet / CD-ROMs/DVDs. Carry out a survey /questionnaire and present the results as a pictogram/table of results. Collect pictures of existing products - photographs/catalogue pictures.

Step 3 - Generate Options The next step in the design process begins with creativity in generating new ideas that may solve the problem. Start with existing solutions and then tear them apart-find out what's wrong with those solutions and focus on how to improve their weaknesses. Draw at least 3 different ideas, with notes.

Step 4 - Select Best Option Once you've conceived alternative solutions to your design problem, you need to analyze those solutions and then decide which solution is best suited for implementation. Use a table, “Decision Matrix”, to indicate whether or not each of your alternative solutions meets the solution objectives by writing (Y)es or (N)o in the space provided.

Step 5 – Develop the Solution The best solution option is developed in detail at this stage. This often involves various engineering calculations and the development of detail and assembly drawings. Following this, a physical or virtual prototype is usually produced and tested to ensure functional compliance.

Step 6 - Evaluation Redesign Evaluate your product. State the good and bad points. Does the solution answer the design brief ? Prototype testing will often reveal the need for improvement in a number of areas. The need to minimize weight and reduce production costs, for example, are sometimes identified at this stage. The design process essentially repeats at this stage in an effort to optimize the design – hence, design becomes a cyclic process.

Activities Video: Wright Brothers -The Design Process (6 Segments) Class discussion Handout LRS-U1-T2-2: Powered Wheel-Chair Design Assignment/Presentation Handout ASG-U1-T2-1: Computer Workstation Design Assignment Handout ASG-U1-T2-1-rubric The class is divided into groups of 3. Each group should assign a recorder and presenter. Students then work in their individual groups to complete the assignment. At the end of the group work session, each student group presents their results.

The Design Project and Design Portfolio

The Engineering design is an iterative process and documentation of this process is essential to justifying and communicating the final proposed design solution. Literature research, group meetings, brainstorming activities and expert consultation are just some of the many ongoing activities for which records should be kept. Student groups will be required to document such activities over the duration of the Design Project in a Design Portfolio.

The Design Portfolio A portfolio is a folder that contains papers or drawings. The portfolio contains: all of the materials related to the design of the product A record of the whole process, from the initial problem statement to the final project report. Look at the handouts below and consider, how each step in the design process will be followed and how CAD/CAM/CNC will be incorporated. Handout: TRGp34 1.2-1: Design Project General Guidelines Handout: Project Log book

Unit 1- Introduction to Design (10 hrs) Topic 3 – Social/Environmental Considerations

The production of common consumer products can have a considerable impact on society (health and the environment). These impacts can begin from the moment the raw materials are harvested, then processed into a finished product and to the point when the product is eventually disposed. Some questions to consider: Where do the materials to produce a common product such as a Tim Hortons coffee cup, used tire or cell phone, come from? What happens to the products after it is worn out? How could an improved design reduce negative environmental impacts.

Example: Discarding a Computer System The computer you're using to read this will one day be nothing more than a pile of garbage, contaminated with heavy metals and toxic plastic. There's lead in the keyboard, toxic flame retardants and antimony in the circuit boards, cadmium in the battery and the chips, all wrapped up in a casing of plastic that will release more deadly substances – furans and dioxins – when it's burned. Environment Canada estimates that computer waste in Canada – totalling more than 67,000 tonnes in 2005 – put 1.1 tonnes of mercury, 4.5 tonnes of cadmium and 3,012 tonnes of lead into landfills.

The Alternatives An improved design could minimize the negative impacts: The newer flat screen monitor designs, for example, consist of fewer smaller components. Batteries can be redesigned to last longer. Can you thing of some more options? What else can be done to reduce waste?

Assignment ASG-U1-T2-1 Product Life Cycle and Environmental Impacts In groups of 2…Select a common consumer product such as a beverage container, an automobile tire, or a cardboard box and develop a 11” x 17” poster depicting the life cycle for that product. Your poster should include graphical illustrations and supporting text labels that help describe the life cycle from raw material to usable product to wasted, re-used or recycled product. Your poster should also include suggestions on how the product could be re-designed to minimize any negative environmental impacts. Video: Aliant online learning: Air -Preserving the Legacy: Introduction to Environmental Technology Series

Product Life Cycle and Environmental Impacts Insert flash from tech student http://www.technologystudent.com/prddes1/lifecy1.html

APEGN APEGN (Association of Professional Engineers and Geoscientists of Newfoundland) members work as part of a team. An APEGN member should strive to influence the work in an environmentally responsible direction. Environmental degradation is recognized as a risk to public welfare, The long-term objectives are to sustain the viability of our ecosystems, and to ensure that the well being of future generations is not compromised by our activities today. To ensure this the association follows an Environmental Guideline when completing all projects. Handout: APEGN Environmental Guideline Video: Sustaining the Earth

Case Study On January 28, 1986, seven astronauts were killed when the space shuttle they were piloting, the Challenger, exploded just over a minute into the flight. The failure of the solid rocket booster O-rings to seat properly allowed hot combustion gases to leak from the side of the booster and burn through the external fuel tank. The failure of the O-ring was attributed to several factors, including faulty design of the solid rocket boosters, insufficient low- temperature testing of the O-ring material and the joints that the O-ring sealed, and lack of proper communication between different levels of NASA management.

Case Study Many people assume it was because of poorly-functioning O rings on the booster rocket. However, those O rings didn’t send that ship up on a cold winter’s morn. People did, and those people drew their most critical information from two simple charts, screened by an overhead projector. The graphs displayed tiny pictures of each shuttle booster, lined up in chronological order, showing launch temperatures and any O ring damage. Handout: ENGINEERING ETHICS The Space Shuttle Challenger Disaster Video: Challenger Disaster

Unit 1- Introduction to Design (10 hrs) Topic 4 – Design for Fabrication

Mass Production

Design for Manufacturing and Assembly Design impacts the manufacturing methods required and the associated differences in production cost. It reduces part count thereby reducing cost. If a design is easier to produce and assemble, it can be done in less time, so it is less expensive. It increases reliability, because if the production process is simplified, then there is less opportunity for errors. The following presentation adapted from Berkeley University Introduces some principles of design for manufacturing and assembly (DFM/DFA). These are summarized in the handout provided. Handout LRS-U1-T4-1 :Principles of Design for Manufacturing and Assembly

Minimize part count by incorporating multiple functions into single parts.

Unit 1- Introduction to Design (10 hrs) Topic 5 – Careers in Design

Activity: The PRODUCTION Birdhouse In the next unit you will be designing and constructing a custom designer birdhouse similar to the ones shown. However, in the following Activity we will be investigating a production birdhouse constructed from hand tools that will be produced in mass quantity. Handout: Mass Production Birdhouse

The PRODUCTION Birdhouse Cost 1x6x8 $ 2.99 Dowel 4ft $ 0.99 1½ inch finishing nails 1Lb $ 1.29 Glue 400ml $ 7.29 Sand Paper $ 0.49 /sheet

Unit 1: The End Review Sheet Unit Exam!