Statement of Work Deliverables

Slides:



Advertisements
Similar presentations
1 Radio Maria World. 2 Postazioni Transmitter locations.
Advertisements

Statistics for Quantitative Analysis
Números.
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
AGVISE Laboratories %Zone or Grid Samples – Northwood laboratory
Fill in missing numbers or operations
/ /17 32/ / /
Reflection nurulquran.com.
EuroCondens SGB E.
Worksheets.
& dding ubtracting ractions.
Finite Elements Principles and Practices - Fall 03 FE Course Lecture II – Outline UCSD - 10/09/03 1.Review of Last Lecture (I) Formal Definition of FE:
1) a) H = 2.06%, S = 32.69%, O = 65.25% b) Ca = 54.09%, O = 43.18%, H = 2.73% 2) 24 x x x.112 = ) a) g/mol, b) g/mol.
FEM FOR HEAT TRANSFER PROBLEMS
Finite Element Method CHAPTER 6: FEM FOR FRAMES
Addition and Subtraction Equations
Multiplication X 1 1 x 1 = 1 2 x 1 = 2 3 x 1 = 3 4 x 1 = 4 5 x 1 = 5 6 x 1 = 6 7 x 1 = 7 8 x 1 = 8 9 x 1 = 9 10 x 1 = x 1 = x 1 = 12 X 2 1.
Measurements and Their Uncertainty 3.1
Create an Application Title 1Y - Youth Chapter 5.
Add Governors Discretionary (1G) Grants Chapter 6.
CALENDAR.
1 1  1 =.
1  1 =.
Summative Math Test Algebra (28%) Geometry (29%)
Evolutionary Structural Optimisation
Around the World AdditionSubtraction MultiplicationDivision AdditionSubtraction MultiplicationDivision.
Grade D Number - Decimals – x x x x x – (3.6 1x 5) 9.
Year 10 Exam Revision Groups of 4 Pupil A,B,C,D 1 point for each pupil.
Numerical Analysis 1 EE, NCKU Tien-Hao Chang (Darby Chang)
The 5S numbers game..
HiRadMat Window Design report v2.0 1Michael MONTEIL- 16 March 2010.
Photo Slideshow Instructions (delete before presenting or this page will show when slideshow loops) 1.Set PowerPoint to work in Outline. View/Normal click.
突破信息检索壁垒 -SciFinder Scholar 介绍
Sampling in Marketing Research
Pole Placement.
Break Time Remaining 10:00.
The basics for simulations
Factoring Quadratics — ax² + bx + c Topic
CrIMSS EDR Performance Assessment and Tuning Alex Foo, Xialin Ma and Degui Gu Sept 11, 2012.
First Experimental Tests 08/04/20141/18. First Experimental Tests Temperature sensors 08/04/20142/18.
MM4A6c: Apply the law of sines and the law of cosines.
Figure 3–1 Standard logic symbols for the inverter (ANSI/IEEE Std
Discrete Event (time) Simulation Kenneth.
Oil & Gas Final Sample Analysis April 27, Background Information TXU ED provided a list of ESI IDs with SIC codes indicating Oil & Gas (8,583)
1 Prediction of electrical energy by photovoltaic devices in urban situations By. R.C. Ott July 2011.
Progressive Aerobic Cardiovascular Endurance Run
Adding Up In Chunks.
Chapter 1 Chemistry and You
Comparison of X-ray diffraction patterns of La 2 CuO 4+   from different crystals at room temperature Pia Jensen.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
Before Between After.
Subtraction: Adding UP
: 3 00.
5 minutes.
Numeracy Resources for KS2
Static Equilibrium; Elasticity and Fracture
12-2 Conditional Probability Obj: To be able to find conditional probabilities and use formulas and tree diagrams.
Resistência dos Materiais, 5ª ed.
Clock will move after 1 minute
& dding ubtracting ractions.
Lial/Hungerford/Holcomb/Mullins: Mathematics with Applications 11e Finite Mathematics with Applications 11e Copyright ©2015 Pearson Education, Inc. All.
Select a time to count down from the clock above
Completing the Square Topic
9. Two Functions of Two Random Variables
Commonly Used Distributions
Introduction Embedded Universal Tools and Online Features 2.
BTECH Mechanical principles and applications
Schutzvermerk nach DIN 34 beachten 05/04/15 Seite 1 Training EPAM and CANopen Basic Solution: Password * * Level 1 Level 2 * Level 3 Password2 IP-Adr.
Presentation transcript:

Statement of Work Deliverables Action: Update Ansys and Matlab code to enhance model confidence. Bugs identified and resolved. Matlab data fed back to Ansys. Model effects of temperature profile for face sheet and truss. Capability for uniform and gradient temperature loads. Evaluate the effects of actuator uncertainties. Two different uncertainty models investigated. Document model and transfer technology to UF. Documented Matlab and Ansys GT code integrated in by UF. Result: All deliverables successfully completed.

Overview Statement of Work Deliverables Update of Previous Work – Correction of Matched CTE Cases Ansys Verification of Matlab Results Matlab Actuator Displacements Fed Back to Ansys (closed the loop) Thermal Aberration Reproduction vs. Correction Actuator Glitch Evaluation Random Glitch Discrete Glitch Actuator Forces Evaluation Concluding Remarks

Parameters Facesheet: Diameter (tip to tip) 2m F-number 1.5 Thickness m Modulus of Elasticity 95 GPa Poisson’s ratio 0.35 CTE 13E-6 /°C Substrate data: Beam diameter 1.16 mm Modulus of elasticity 68.3 Gpa Poisson’s ratio 0.33 CTE 0 /°C Actuator stiffness 2N/m Thermal loads: 1) 10°C uniform 2) 1°C/m gradient Actuators cases: 1) 15 2) 159 3) 1563

Update of Previous Work – Correction of Matched CTE Cases Problem: Similar displacements for matched and unmatched CTEs of the facesheet and truss. 10°C uniform load – 159 actuators Facesheet only Matched CTEs (incorrect) Mismatched CTEs Solution: Bug fixed in Ansys code so correct CTEs assigned in the matched case.

Update of Previous Work – Correction of Matched CTE Cases Problem: Similar displacements for matched and unmatched CTEs of the facesheet and truss. 10°C uniform load – 159 actuators Facesheet only Matched CTEs (incorrect) Mismatched CTEs Solution: Bug fixed in Ansys code so correct CTEs assigned in the matched case.

Correction of Matched CTE Cases - 10ºC Uniform, 159 Actuators Previous Facesheet only Updated Matched CTEs Previous Matched CTEs Matched CTE case is now similar to the facesheet only case.

Correction of Matched CTE Cases - 1ºC/m Gradient, 159 Actuators Previous Facesheet only Updated Matched CTEs Previous Matched CTEs Matched CTE case is now similar to the facesheet only case.

ANSYS Verification of Matlab Results Previously, Ansys provided influence coefficients and the response to thermal loads. These were imported into Matlab to calculate actuator displacements to reproduce the aberration. Currently, the Matlab-calculated actuator displacements are fed back into Ansys to either: Correct the thermally loaded system. Reproduce the thermal aberrations by actuation from an initially unloaded system (similar to previous Matlab work). Results: Correct and Reproduce yield similar results.

Summary: Reproduction vs. Correction 15 159 1563 Reproduction uniform x-grad Absolute RMS (nm) 2549 147 2083 93 341 40 RMS (%) 0.926% 0.570% 1.232% 0.992% 0.127% 1.203% 15 159 1563 Correction uniform x-grad Absolute RMS (nm) 2551 147 2084 93 342 40 RMS (%) 0.927% 0.570% 1.232% 0.995% 0.127% 1.204% Results: The correction is produced with essentially the same accuracy as the reproduction.

Ansys Plots: Reproduction vs. Correction Reproduction vs. Correction Plots: 15 actuators, 10ºC Uniform 15 actuators, 1ºC/m X-Gradient 159 actuators, 10ºC Uniform 159 actuators, 1ºC/m X-Gradient 1563 actuators, 10ºC Uniform 1563 actuators, 1ºC/m X-Gradient

10ºC Uniform, 15 Actuators Correction Reproduction Absolute RMS 2549 nm Normalized RMS 0.926 % Absolute RMS 2551 nm Normalized RMS 0.927 %

1ºC/m X-Gradient, 15 Actuators Correction Reproduction Absolute RMS 147 nm Normalized RMS 0.570 % Absolute RMS 147 nm Normalized RMS 0.570 %

10ºC Uniform, 159 Actuators Correction Reproduction 2083 1.232 2084 Absolute RMS 2083 nm Normalized RMS 1.232 % Absolute RMS 2084 nm Normalized RMS 1.232 %

1ºC/m X-Gradient, 159 Actuators Correction Reproduction Absolute RMS 93 nm Normalized RMS 0.992 % Absolute RMS 93 nm Normalized RMS 0.995 %

10ºC Uniform, 1563 Actuators Correction Reproduction 341 0.127 342 Absolute RMS 341 nm Normalized RMS 0.127 % Absolute RMS 342 nm Normalized RMS 0.127 %

1ºC/m X-Gradient, 1563 Actuators Correction Reproduction Absolute RMS 40 nm Normalized RMS 1.203 % Absolute RMS 40 nm Normalized RMS 1.204 %

Actuator Glitch Three cases of actuator glitch are compared: No Glitch – actuators have infinite resolution. Discrete Glitch – actuator displacements are multiples of 50 nm. Random Glitch – a random glitch between +/- 50 nm is added to each actuator displacement. Results: The RMS errors are not sensitive to small glitches. (Small is relative to maximum actuator strokes).

Glitch Summary No Glitch 15 159 1563   uniform x-grad Absolute RMS Error (nm) 2551 147 2084 93 342 40 RMS Error (%) 0.926% 0.570% 1.232% 0.995% 0.127% 1.204% Glitch/Max Stroke (%) 0.07% 1.47% 0.15% 2.00% 0.24% 1.79% Discrete Glitch 2556 468 2089 216 347 72 0.929% 1.813% 1.235% 2.316% 0.129% 2.146% Additional RMS Error (%) 0.00% 1.24% 1.32% 0.94% Random Glitch 2593 353 268 346 88 0.942% 1.366% 1.236% 2.871% 2.629% 0.02% 0.80% 1.88% 1.42% Result: Glitch Additional RMS Error %  Glitch/Maximum Actuator Stroke %.

Ansys Plots: Actuator Glitch No Glitch vs. Discrete Glitch vs. Random Glitch: 15 actuators, 10ºC Uniform 159 actuators, 10ºC Uniform 1563 actuators, 10ºC Uniform 15 actuators, 1ºC/m X-Gradient 159 actuators, 1ºC/m X-Gradient 1563 actuators, 1ºC/m X-Gradient

10ºC Uniform, 15 Actuators No Glitch Discrete Glitch Random Glitch Abs RMS 2551 nm % RMS 0.927 % Abs RMS 2556 nm % RMS 0.929 % Abs RMS 2593 nm % RMS 0.942 %

10ºC Uniform, 159 Actuators No Glitch Discrete Glitch Random Glitch Abs RMS 2084 nm % RMS 1.232 % Abs RMS 2089 nm % RMS 1.235 % Abs RMS 2089 nm % RMS 1.236 %

10ºC Uniform, 1563 Actuators No Glitch Discrete Glitch Random Glitch Abs RMS 342 nm % RMS 0.127 % Abs RMS 347 nm % RMS 0.129 % Abs RMS 346 nm % RMS 0.129 %

1ºC/m X-Gradient, 15 Actuators No Glitch Discrete Glitch Random Glitch Abs RMS 147 nm % RMS 0.570% Abs RMS 468 nm % RMS 1.813 % Abs RMS 353 nm % RMS 1.366 %

1ºC/m X-Gradient, 159 Actuators No Glitch Discrete Glitch Random Glitch Abs RMS 93 % RMS 0.995% Abs RMS 216 nm % RMS 2.316 % Abs RMS 268 nm % RMS 2.817 %

1ºC/m X-Gradient, 1563 Actuators No Glitch Discrete Glitch Random Glitch Abs RMS 40 % RMS 1.204% Abs RMS 72 nm % RMS 1.146 % Abs RMS 88 nm % RMS 2.629 %

Actuator Forces Force Evaluation Increasing numbers of actuators, increases required actuator forces. 15 actuators case met force specifications (< 0.1N) for both 10ºC Uniform and 1ºC/m X-Gradient loads. 159 and 1563 actuators cases exceed force specifications for both loadings. (Note: will add 45 and 93 actuator cases.)

Ansys Plots: Actuator Forces Force Plots 15 actuators, 10ºC Uniform 45 actuators, 10°C Uniform 93 actuators, 10°C Uniform 159 actuators, 10ºC Uniform 1563 actuators, 10ºC Uniform 15 actuators, 1ºC/m X-Gradient 45 actuators, 1°C/m X-Gradient 93 actuators, 1°C/m X-Gradient 159 actuators, 1ºC/m X-Gradient 1563 actuators, 1ºC/m X-Gradient

10ºC Uniform, 15 Actuators P2V 1419 m Absolute RMS 2550 nm Normalized RMS 0.926 % Maximum Force 0.026 N Maximum Stroke 68.4 actuator forces aberration Maximum actuator force within limit (< 0.1N).

10ºC Uniform, 45 Actuators P2V 592 m Absolute RMS 2,482 nm Normalized RMS 4.72 % Maximum Force 3.09 N Maximum Stroke 49.3 actuator forces aberration Maximum actuator force is exceeded (> 0.1N).

10ºC Uniform, 93 Actuators P2V 651 m Absolute RMS 2,329 nm Normalized RMS 2.03 % Maximum Force 6.92 N Maximum Stroke 38.8 actuator forces aberration Maximum actuator force is exceeded (> 0.1N).

10ºC Uniform, 159 Actuators P2V 661 m Absolute RMS 2085 nm Normalized RMS 1.23 % Maximum Force 10.0 N Maximum Stroke 32.9 actuator forces aberration Maximum actuator force is exceeded (> 0.1N)

10ºC Uniform, 1563 Actuators P2V 654 m Absolute RMS 342 nm Normalized RMS 0.127 % Maximum Force 23.0 N Maximum Stroke 20.8 actuator forces aberration Maximum actuator force is exceeded (> 0.1N)

1ºC/m X-Gradient, 15 Actuators P2V 254 m Absolute RMS 147 nm Normalized RMS 0.570 % Maximum Force 0.0006 N Maximum Stroke 3.4 actuator forces aberration Maximum actuator force is within limit (< 0.1N).

1ºC/m X-Gradient, 45 Actuators P2V 283 m Absolute RMS 121 nm Normalized RMS 0.635 % Maximum Force 0.347 N Maximum Stroke 3.45 actuator forces aberration Maximum actuator force is exceeded (> 0.1N).

1ºC/m X-Gradient, 93 Actuators P2V 170.7 m Absolute RMS 106 nm Normalized RMS 0.763 % Maximum Force 0.469 N Maximum Stroke 2.98 actuator forces aberration Maximum actuator force is exceeded (> 0.1N).

1ºC/m X-Gradient, 159 Actuators P2V 88.1 m Absolute RMS 93 nm Normalized RMS 0.995 % Maximum Force 0.58 N Maximum Stroke 2.5 actuator forces aberration Maximum actuator force is exceeded (> 0.1N)

1ºC/m X-Gradient, 1563 Actuators P2V 16.1 m Absolute RMS 40 nm Normalized RMS 1.204 % Maximum Force 4.9 N Maximum Stroke 2.8 actuator forces aberration Maximum actuator force is exceeded (> 0.1N)

Concluding Remarks Only the 15 actuator case satisfied all specified criteria RMS errors for the two thermal loads were low, less than 1%. Maximum force levels required only 25% of the holding force. Maximum stroke was about 50% of maximum. Large P2V amplitudes corrected (1419 m and 254 m). Increasing actuators increased actuator forces to unacceptable levels.