Applications to study local stress of polymer chains

Slides:



Advertisements
Similar presentations
1 Radio Maria World. 2 Postazioni Transmitter locations.
Advertisements

The Fall Messier Marathon Guide
Números.
Kay Saalwächter Martin-Luther-Universität Halle-Wittenberg
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
AGVISE Laboratories %Zone or Grid Samples – Northwood laboratory
Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
FIG_18.jpg.
/ /17 32/ / /
Reflection nurulquran.com.
1
EuroCondens SGB E.
Worksheets.
Ecole Nationale Vétérinaire de Toulouse Linear Regression
Measuring Sound Contents: The Microphone The Sound Level Meter Leq
Sequential Logic Design
INTRODUCTION TO MECHANICS FOR SOLIDS AND STRUCTURES
STATISTICS INTERVAL ESTIMATION Professor Ke-Sheng Cheng Department of Bioenvironmental Systems Engineering National Taiwan University.
Addition and Subtraction Equations
By John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman
David Burdett May 11, 2004 Package Binding for WS CDL.
1 When you see… Find the zeros You think…. 2 To find the zeros...
/4/2010 Box and Whisker Plots Objective: Learn how to read and draw box and whisker plots Starter: Order these numbers.
Add Governors Discretionary (1G) Grants Chapter 6.
CALENDAR.
1 1  1 =.
1  1 =.
CHAPTER 18 The Ankle and Lower Leg
Summative Math Test Algebra (28%) Geometry (29%)
ASCII stands for American Standard Code for Information Interchange
£1 Million £500,000 £250,000 £125,000 £64,000 £32,000 £16,000 £8,000 £4,000 £2,000 £1,000 £500 £300 £200 £100 Welcome.
The 5S numbers game..
LaB6 Scanning Electron Source
1 A B C
突破信息检索壁垒 -SciFinder Scholar 介绍
A Fractional Order (Proportional and Derivative) Motion Controller Design for A Class of Second-order Systems Center for Self-Organizing Intelligent.
7/19/2002 Kenneth John Webb Page 1 COMPARING EMISSION MEASUREMENTS IN A REVERBERATION CHAMBER AND A SEMI-ANECHOIC CHAMBER By Kenneth John Webb Principal.
Break Time Remaining 10:00.
The basics for simulations
Aerospace Structures and Materials Lecture 22: Laminate Design.
PP Test Review Sections 6-1 to 6-6
TCCI Barometer March “Establishing a reliable tool for monitoring the financial, business and social activity in the Prefecture of Thessaloniki”
1 Prediction of electrical energy by photovoltaic devices in urban situations By. R.C. Ott July 2011.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
Progressive Aerobic Cardiovascular Endurance Run
2.5 Using Linear Models   Month Temp º F 70 º F 75 º F 78 º F.
Area under curves Consider the curve y = f(x) for x  [a, b] The actual area under the curve is units 2 The approximate area is the sum of areas.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
TCCI Barometer September “Establishing a reliable tool for monitoring the financial, business and social activity in the Prefecture of Thessaloniki”
1. Motion of an object is described by its position,
When you see… Find the zeros You think….
LN-251 SimINERTIAL Performance
2011 WINNISQUAM COMMUNITY SURVEY YOUTH RISK BEHAVIOR GRADES 9-12 STUDENTS=1021.
Before Between After.
2011 FRANKLIN COMMUNITY SURVEY YOUTH RISK BEHAVIOR GRADES 9-12 STUDENTS=332.
THE NATIONAL GALLERY STRUCTURE CHART As at 30 JUNE 2010.
Subtraction: Adding UP
Static Equilibrium; Elasticity and Fracture
ANALYTICAL GEOMETRY ONE MARK QUESTIONS PREPARED BY:
Converting a Fraction to %
Resistência dos Materiais, 5ª ed.
Clock will move after 1 minute
Copyright © 2013 Pearson Education, Inc. All rights reserved Chapter 11 Simple Linear Regression.
Lial/Hungerford/Holcomb/Mullins: Mathematics with Applications 11e Finite Mathematics with Applications 11e Copyright ©2015 Pearson Education, Inc. All.
Select a time to count down from the clock above
1 Non Deterministic Automata. 2 Alphabet = Nondeterministic Finite Accepter (NFA)
Schutzvermerk nach DIN 34 beachten 05/04/15 Seite 1 Training EPAM and CANopen Basic Solution: Password * * Level 1 Level 2 * Level 3 Password2 IP-Adr.
Martin-Luther-Universität Halle-Wittenberg FOR 1145 NMR studies on polyphile-lipid interactions – an update Ruth Bärenwald, Anja Achilles, Frank Lange,
Presentation transcript:

Applications to study local stress of polymer chains Bias-free determination of homonuclear dipole-dipole coupling constant distributions and Applications to study local stress of polymer chains Kay Saalwächter Martin-Luther-Universität Halle-Wittenberg Institut für Physik NMR group

Dipole-dipole coupling constant distributions and local stress of polymer chains Kay Saalwächter Double-quantum (DQ) NMR principles: normalization and distribution analysis elastomer applications static low-field vs. MAS (BaBa-xy16) structure of phosphates Chain stretching and orientation in strained elastomers tDQ DQ reconversion DQ excitation I SMQ / DQ

Dipole-dipole couplings and time evolution dipolar coupling tensor D µ gigj/rij3 B0 D zz xx yy static powder spectrum Dstat = Dzz » 30 kHz! t FID q ± wdip(q) w R. Graf et al., Phys. Rev. Lett. 80 (1998) 5783 KS, Progr. NMR Spectrosc. 51 (2007) 1-35

DQ spectroscopy for homonocular dip. couplings tDQ DQ reconversion DQ excitation I SMQ / DQ 1.0 SMQ 0.8 DQ nDQ 0.6 fit norm. intensity 0.4 0.2 0.0 2 4 6 8 10 12 DQ evolution time / ms

DQ spectroscopy and normalization tDQ DQ reconversion DQ excitation I SMQ / DQ determined by Dj = ±90° or n´180°

Constrained chain motion of polymers NMR in entangled melts and networks (=rubbers) above Tg: S = Dres/Dstat ~ 10-2 dynamic chain order parameter b(t) R

fast-motion limit (rubber T >> Tg): Dipole-dipole coupling and chain dynamics/statistics B0 Dstat » 30 kHz (!) powder average (all b) R q fast-motion limit (rubber T >> Tg): wD ~ á P2(cos b) ñt ´ P2(cos q) freq. w Dres » 100 Hz powder average (all q) static limit (glass): wD ~ P2(cos b)/rHH3 b2 ± wD(b2) b1 ± wD(b1) freq. w H H dyn. order parameter S = Dres/Dstat = 3/(5N) S and its distribution can be measured by time-domain (MQ) NMR also accessible: isotropic fraction = sol, network defects chain ends KS, Prog. Nucl. Magn. Reson. Spetrosc. 51 (2007), 1 network chain, N segments

Bimodal networks: test case for inhomogeneities linear superpositions of experimental data for net0 and net100 0.6 0.4 % short chains: DQ intensity net0 (monomodal) net10 net20 net30 0.2 net50 PDMS precursors: long chains: 47k short chains: 0.8k best-fit (monomodal) net70 net90 net100 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 excitation time tDQ / ms KS, J.-U. Sommer, et al., J. Chem. Phys. 119 (2003), 3468

Model-heterogeneous networks residual coupling distributions in end-linked PDMS model networks .008 100% PDMS precursors: long chains: 47k short chains: 0.8k 90% .006 70% relative amplitude KS, J. Am. Chem. Soc. 125 (2003), 14684 Bruker minispec mq20, 0.5 T cheap NMR! (~ € 75.000.-) 50% .004 30% % short chains 20% .002 10% 0% 400 800 1200 1600 NMR crosslink density Dres (~ S ~ 1/N) / Hz KS, J.-U. Sommer, et al., J. Chem. Phys. 119 (2003), 3468 W. Chassé, J. López-Valentín, G.D. Genesky, C. Cohen, KS, J. Chem. Phys. 134 (2011) 044907

Inhomogeneities in rubbers: defects Conventional: accelerator/sulphur (0.2/1) Efficient: accelerator/sulphur (12/1) Peroxide: dicumyl peroxide different cure systems: SMQ DQ loops dangling ends sol mobile impurities tDQ J. López Valentín, P. Posadas, A. Fernández-Torres, M. A. Malmierca, L. González, W. Chassé, KS, Macromolecules 43 (2010) 4210.

Inhomogeneities in natural rubber nDQ= DQ/(SMQ-tail) 0.5 initial slope reflects crosslink density (~ Dres ) and its distribution tDQ R· n … “zipping” reaction: J. López Valentín, P. Posadas, A. Fernández-Torres, M. A. Malmierca, L. González, W. Chassé, KS, Macromolecules 43 (2010) 4210.

Functional-group selectivity: DQ MAS NMR natural rubber network (very homogeneous) 1H (400 MHz), 10 kHz MAS 1 ppm 2 3 4 5 6 7 CH3 CH2 CH static (implies single Dres!) CH3 SMQ CH3 DQ CH3 nDQ fit 205 Hz 2 4 6 8 10 12 0.0 0.2 0.4 0.6 0.8 1.0 norm. intensity DQ evolution time / ms 0.6 CH nDQ CH2 nDQ 0.4 norm. intensity 0.2 nDQ stat fit 281 Hz 0.0 2 4 DQ evolution time / ms

BaBa-xy16 – truly broadband DQ MAS NMR (px) (px py) (py) inverted 90°x 180°±x virtual (composite) p pulses: º 90°-x x x y y original BaBa t t tR x x y y x x y y x x y y x x y y “broadband” BaBa t t t t t t t t y t (px) (+ inverted) x (py) BaBa-xy16 see: M. Feike, D. E. Demco, R. Graf, J. Gottwald, S. Hafner, H. W. Spiess J. Magn. Reson. A 122 (1996) 214.

BaBa-xy16 – truly broadband DQ MAS NMR c Q2a Q3a Q3b Q2b MgP4O11, 31P at 243 MHz (14.1 T) dcswL/2p = 35 – 42 kHz * 8 kHz MAS (impurity) 100 –100 –200 ppm –10 10 20 kHz 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 ms * offset variation pulse length (90° º 1.6 ms) –50 –100 50 ppm “broadband BaBa” BaBa-xy16, DQ BaBa-xy16, ref (impurity) BaBa at 30 kHz MAS recoupling time 16 tR = 0.533 ms Q2 Q3 see: M. Feike, D. E. Demco, R. Graf, J. Gottwald, S. Hafner, H. W. Spiess J. Magn. Reson. A 122 (1996) 214.

BaBa-xy16 – truly broadband DQ MAS NMR c Q2a Q3a Q3b Q2b 2D DQ corr., 30 kHz MAS recoupling time 16 tR = 0.533 ms Q2 Q2 Q3 Q3 1 2 3 4 –115 –110 –105 single-quantum shift double-quantum shift –100 –95 –90 –85 –80 –75 –70 ppm –35 –40 –45 –50 –55

BaBa-xy16 – truly broadband DQ MAS NMR DQ build-up / SMQ curves 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 DQ evolution time / ms BaBa-xy16 DQ ´3-4! 4 tR 8 tR “broadband BaBa” 1.0 peak 4 0.8 peak 3 peak 2 0.6 peak 1 norm. intensity norm. intensity SMQ 0.4 0.2 DQ 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 DQ evolution time / ms

BaBa-xy16 – truly broadband DQ MAS NMR normalized DQ build-up curves: coupling constant estimates (2nd-moment approx.) expected: DPOP(2.9Å)/2p » 800 Hz rms-sum: (SD2)½/2p (dst. up to 5 Å) Q2a : 1.34 kHz Q3a : 1.47 kHz Q3b : 1.38 kHz Q2b : 1.20 kHz 1.0 peak 4: 750 Hz Q3 peak 3: 780 Hz 0.8 peak 2: 670 Hz Q2 0.6 peak 1: 770 Hz norm. intensity 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 DQ evolution time / ms

Unixaxial stretching of polymer networks macroscopic z x R R ? microscopic

Unixaxial stretching of polymer networks macroscopic z x R R a microscopic

Unixaxial stretching of polymer networks Segmental (backbone) order parameter Sb = second moment of time-averaged orientation distribution f b R f B0 ® the residual dipolar interaction measures the local stress and strain Sommer, J.-U. et al., Phys. Rev. E 78 (2008) 051803

DQ NMR on stretched networks f a Bruker minispec mq20 0.5 T (20 MHz)

DQ NMR on stretched networks average stretching: B W remove orientation effect! “artifical powder” response allows distribution analysis! l d d i i d d a o R f a

Local stress/strain distributions in strained rubbers vulcanized natural rubber very homogeneous, low defect content l=1.0 l=4.2 orientation effect removed! ® increased inhomogeneity, coexistence of almost unchanged and highly strained chains probability

Comparison with models of rubber elasticity classical affine model R ^ F R || F stretched R 2.5 unstretched 2.0 R 1.5 probabilty tube model 1.0 phantom model 0.5 0.0 1 2 3 4 5 6 D /D res res, l=1

Confirmation of models of rubber elasticity rel. anisotropy from angle-dependent build-up curves average local stretching from artificial powder 2.5 3.0 NR1B NR3A 2.0 2.5 NR3B DQ,powder D res /D res,l=1 1.5 nI 2.0 ò / 1.0 DQ 1.5 nI 0.5 ò 0.0 1.0 20 40 60 80 100 5 10 15 20 W / ° l 2 l -1 elongation - ® nice confirmation of phantom behavior

º Local deformation in filled elastomers hydrodynamic model of polydisperse and undeformable hard spheres: matrix overstrain R. Christensen, Mechanics of Composite Materials Wiley, New York,1979. J. Domurath et al., J. Non-Newtonian Fluid Mech. 171-172 (2012) 8-16. º macroscopic z x ? microscopic

Local deformation in filled elastomers vulcanized natural rubber with feff ~8-19 vol% silica filler effective local stretching lloc ~ <Dres1/2> homogeneous dispersion inhomogeneous dispersion new hydrodyn. model ® a new, corrected hydrodynamic model is confirmed ® samples with aggregated filler have a more complex behavior

Summary and Acknowledgement Dipolar couplings as a probe for molecular dynamics: local dynamics in elastomers, [structure of phosphates] Þ BaBa-xy16: robust broadband homonuclear DQ MAS NMR DIPSHIFT: site-resolved fast-limit and intermediate motions crystallinity and complexity in P3HT slow protein dynamics thanks to: Frank Lange (U Halle), Robert Graf (MPI-P Mainz) Maria Ott, Martin Schiewek, Horst Schneider (U Halle), Roberto Pérez Aparicio, Paul Sotta (CNRS-Rhodia, Lyon) €€€: