TRI  P Presentation to KVI Beleidscollege 9 May 2002 K. Jungmann.

Slides:



Advertisements
Similar presentations
LRP WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Town Meeting Madrid, June 1 - 3, /10/20141WG5 - N. Severijns - Town.
Advertisements

LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
ISAC Physics Working Group Convenors Malcolm Butler and Barry Davids.
Bruce Kennedy, RAL PPD Particle Physics 2 Bruce Kennedy RAL PPD.
Status of TRI P Rotary Visit to KVI 30 januari 2004 Klaus Jungmann.
TRI  P presentatie voor RUG College van Bestuur 17 februari 2003 Klaus Jungmann.
TRI  P presentatie voor KVI medewerkers 14 februari 2002 Klaus Jungmann Ad van den Berg Sytze Brandenburg.
Garfield Graphics included with kind permission from PAWS Inc. All Rights Reserved. Exchange Particles.
: The mirror did not seem to be operating properly: A guide to CP violation C hris P arkes 12/01/2006.
The Standard Model and Beyond [Secs 17.1 Dunlap].
Discrete Space-Time Symmetries Xiao-Gang He USTC, Nanakai, and NTU 1. Discrete Space-Time Symmetries 2. The Down Fall of Parity P Symmetry 3. The Down.
Uniwersytet JagiellońskiInstytut Fizyki Jacek BierońZakład Optyki Atomowej FAMO, Jurata, IX 2006 MCDHF approach to CPT symmetries in heavy atoms.
Uniwersytet JagiellońskiInstytut Fizyki Jacek BierońZakład Optyki Atomowej Time-reversal symmetry violation in heavy atoms Kraków, 24 IV 2008.
1 FK7003 Lecture 8 ● CP -violation ● T -violation ● CPT invariance.
ATLAS Experiment at CERN. Why Build ATLAS? Before the LHC there was LEP (large electron positron collider) the experiments at LEP had observed the W and.
Lecture 14 Fission and Fusion. Elementary Particles. Nuclear Fission Nuclear Fusion Fundamental Interaction (Forces) Elementary Particles.
and Stockholm, August 27, 2004 Gerard ’t Hooft Utrecht University The Nature of.
 : TRI  P : Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics TRIX: Trapped Radium Ion eXperiments Oscar Versolato.
Fundamental principles of particle physics
Schlüsselexperimente der Elementarteilchenphysik:.
The 2008 Nobel Prize in Physics. Symmetries Symmetries often give us a way to characterize how forces interact. Here, a mirror symmetry flips left and.
Modern Physics LECTURE II.
Chapter 29 Exploring the Early Universe. Guiding Questions 1.Has the universe always expanded as it does today? 2.What is antimatter? How can it be created,
Opportunities for low energy nuclear physics with rare isotope beam 현창호 대구대학교 과학교육학부 2008 년 11 월 14 일 APCTP.
Elementary particles atom Hadrons Leptons Baryons Mesons Nucleons
THE STANDARD MODEL  What’s fundamental  What’s in a name.
The Standard Model and Beyond Harrison B. Prosper 6 July, 2010 Fermilab Summer Lecture Series.
TRIµP Laser Spectroscopy: Status and Future U Dammalapati TRI  P Facility Lasers for Na  -decay Ra Spectroscopy & EDM Towards cooling of Heavy Alkaline.
Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy SCHEDULE 26-Jan pm LRB Intro lecture 28-Jan pm LRBProblem solving.
BY: BRETT SLAJUS Particle Physics. Standard Model of Elementary Particles Three Generations of Matter (Fermions)
Status of TRI  P Programme Advisory Committee To KVI 20 November 2003 Klaus Jungmann.
Particle Physics J4 Leptons and the standard model.
2 nd Presentation of Prof. Cho’s Class Hossain Ahmed Introduction to Standard Model.
31 January 2003 NuPECC Town Meeting, January/February GSI 1 Klaus Jungmann, 31 Janur 2003 NuPECC Town Report of Fundamental Interaction.
Point 1 activities and perspectives Marzio Nessi ATLAS plenary 2 nd October 2004 Large Hadron Collider (LHC)
Electroweak Theory Mr. Gabriel Pendas Dr. Susan Blessing.
Standard Model A Brief Description by Shahnoor Habib.
KVI – Groningen Fundamental Interactions Klaus Jungmann RECFA Meeting, Amsterdam, 23 September 2005 AGOR.
Title Page Paul Matteri.
Jeopardy Jeopardy PHY101 Chapter 12 Review Study of Special Relativity Cheryl Dellai.
A new RFQ cooler: concept, simulations and status Trapped Radioactive Isotopes:  icro-laboratories for Fundamental Physics E. Traykov TRI  P project.
Radioactivity Physics 12 Adv. Radioactivity Radioactive decay is the emission of some particle from a nucleus which is accompanied by a change of state.
Fundamental principles of particle physics G.Ross, CERN, July08.
Atomic Physics – Part 3 Ongoing Theory Development To accompany Pearson Physics PowerPoint presentation by R. Schultz
Introduction to CERN Activities
Fundamental interactions and symmetries at low energies what does NUPECC say…. Time-reversal violation and electric dipole moments Time-reversal violation.
May-June 2006 Fundamental Symmetries & Interactions Fundamental Symmetries and Interactions 4 th block, year 2005/2006, Rijksuniversiteit Groningen K.
Phys 102 – Lecture 28 Life, the universe, and everything 1.
June 2004Fundamental Interactions1 Klaus Jungmann ECT*, Trento, June 2004 Fundamental Interactions.
Ramsey Spectroscopy: Search for e- Dipole Moment
ELECTROWEAK UNIFICATION Ryan Clark, Cong Nguyen, Robert Kruse and Blake Watson PHYS-3313, Fall 2013 University of Texas Arlington December 2, 2013.
Quantum quivering of gravity The search for the unified field theory.
What is the Standard Model of Particle Physics ???? 1. A theory of three of the four known fundamental interactions and the elementary particles that.
Chapter 14 Section 14.1.
Water ( H 2 O ) oxygen atom ( O ) proton ( p ) electrons ( e ) neutron ( n ) 3 quarks What the matters are made out of ? 3 quarks
More on the Standard Model Particles from quarks Particle interactions Particle decays More conservation laws Quark confinement Spin.
TRI  P project & facility TRI  P separator Status & future plans TRI  P SEPARATOR: STATUS & FUTURE TRI  P Krakow 3-6 June 2004 Andrey Rogachevskiy.
TRI  P RFQ design, simulations and tests E. Traykov TRI  P project and facility RFQ tests and design Simulations Conclusion TRI  P Group: G.P. Berg,
CERN Richard Jacobsson 1 Welcome to CERN!. CERN Richard Jacobsson 2 What is CERN? l European Organization for Nuclear Research, founded in 1954 l Currently.
The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision.
The Standard Model of Particle Physics
Lecture 13 – the weak force
Particle Placemat.
Matter vs. Antimatter The Question of Symmetry
Frontiers of fundamental physics
The Standard Model The Standard Model combines the electromagnetic, weak, and strong forces (= interactions). Bosons with spin 1 communicate the force.
Standard Model Review 2019.
„The T violating phase is only associated to the heavy quark sector, and no T-violation is expected to be seen in low energy nuclear interactions.
Weak interactions.
PHYS 3446, Spring 2012 Andrew Brandt
Presentation transcript:

TRI  P Presentation to KVI Beleidscollege 9 May 2002 K. Jungmann

TRI     project  program 2001   2013 Theory Nuclear Physics Experiment Nuclear Physics Atomic Physics people : people : G. Berg, O. Dermois, M. Harakeh, R. Hoekstra, S. Hoekstra, K. Jungmann, S. Kopecky, R. Morgenstern, R. Rogachevsky, R. Timmermans, H. Warringa, L. Willmann, H. Wilschut + many morefunding:

Fundamental Interactions TRI  P Strong Gravitation?Magnetism Electricity Maxwell Glashow, Salam, t'Hooft, Veltman,Weinberg Weak Electro- Electro-Magnetism Electro-Weak Electro-Weak Standard Model Standard Model Grant GrantUnification not yet known?

TRI  P © CERN The Basic Particles in the Standard Model

TRI  P © CERN The Basic Particles and Interactions in the Standard Model © CERN

TRI  P Some Questions Left Open by Standard Model • Masses of Fundamental Fermions (leptons, quarks) • Origin of Parity Violation in Weak Interactions (nature prefers lefthandedness) • Dominance of Matter over Antimatter in Universe CP - Violation, Time Reversal Symmetry udscbt e e   

TRI  P Possibilities to Test New Models  High Energies & direct observations Low Energies & Precision Measurements

TRI  P Atomic Physics Nuclear Physics Particle Physics

TRI  P TRI  P Facility Principal Layout

Key Experiments TRI  P  TRI  P will be a user facility  open to outside users • KVI will concentrate first on  electroweak tests  electroweak tests *  - decay (Na, K) *  - decay (Na, K) * electric dipole moments (Ra) * electric dipole moments (Ra) * parity violation (Fr, Ra + ) * parity violation (Fr, Ra + )  applications  applications * ALCATRAZ (rare Ca isotope detection) * ALCATRAZ (rare Ca isotope detection) • Networks will jointly address  technology and science issues  technology and science issues * NIPNET, BETANET, ION Catcher * NIPNET, BETANET, ION Catcher

TRI  P Nuclear physics Atomic physics Fundamental Interactions  -decay Atomic moments Electric dipole Nuclear moments Nuclear structure  - and  -decay Atomic structure chemistry condensates very rare isotope detection Physics Possibilities with Atomic Traps Covered by TRI  P

TRI  P Isotope abundance / lifetime 390,86 sec 40 96,94 % jaar <0, % 420,65 % 430,14 % 44 2,09 % dagen 460,004 % 474,54 dagen MOT system for Ca-isotopes R.Hoekstra.,H.Wilschut, R.Morgenstern, S.Hoekstra J.Mulder TRI  P medical applications dating

TRI  P Magneto-Optical Trap (MOT) Laser beam atoms coldatoms ~1 million Na atoms Temperature < 1 mK

TRI  P Zeeman Slower laser AOM EOM

TRI  P We are looking forward to a variety of experiments • Fundamental Interactions • Direct Applications • Interaction with other Groups on International Scene • Provide Facility for Outside Users