Afscheidsrede prof. dr. R. A

Slides:



Advertisements
Similar presentations
Números.
Advertisements

Trend for Precision Soil Testing % Zone or Grid Samples Tested compared to Total Samples.
AGVISE Laboratories %Zone or Grid Samples – Northwood laboratory
Chapter 7 Chemical Reactions.
Reactions in Aqueous Solutions Chapter 7
Percent Yield and Limiting Reactants
1/2/2014 (c) 2000, Ron S. Kenett, Ph.D.1 Statistics for Molecular Biology and Bioinformatics Instructor: Ron S. Kenett
Chapter 9 Chemical Quantities.
Chemical Quantities or
A. Write skeleton equations
The Joy of Balancing Equations. What we already know… Coefficient 2CaCl 2 The 2 tells you that there are 2Ca and 4Cl CaCl 2 Subscript The little two tells.
Chapter 7 Chemical Quantities
Fill in missing numbers or operations
CHAPTER 9 Water and Solutions 9.3 Properties of Solutions.
1
EuroCondens SGB E.
Worksheets.
1. 19 F: 9e –, 9p +, 10n 0 Ar-40: 18e –, 18p +, 22n 0 2.a) Al 2 S 3 b) MgO 3.NaF = 4.0 – 0.9 = 3.1: ionic, London. H 2 O = 3.5 – 2.1 = 1.4: dipole-dipole.
1) a) H = 2.06%, S = 32.69%, O = 65.25% b) Ca = 54.09%, O = 43.18%, H = 2.73% 2) 24 x x x.112 = ) a) g/mol, b) g/mol.
1.HCl = 3.0 – 2.1 = 0.9: dipole-dipole, London. H 2 O = 3.5 – 2.1 = 1.4: hydrogen bonding (H with N, O, or F), London. NaCl = 3.0 – 0.9 = 2.1: ionic, London.
Presented by The Coal Rush Revisited: R. W. Beck, Inc. IPED COAL POWER CONFERENCE January 18-19, 2007 St. Petersburg, FL Nicholas P. Guarriello An Economic.
Addition and Subtraction Equations
Multiplication X 1 1 x 1 = 1 2 x 1 = 2 3 x 1 = 3 4 x 1 = 4 5 x 1 = 5 6 x 1 = 6 7 x 1 = 7 8 x 1 = 8 9 x 1 = 9 10 x 1 = x 1 = x 1 = 12 X 2 1.
Division ÷ 1 1 ÷ 1 = 1 2 ÷ 1 = 2 3 ÷ 1 = 3 4 ÷ 1 = 4 5 ÷ 1 = 5 6 ÷ 1 = 6 7 ÷ 1 = 7 8 ÷ 1 = 8 9 ÷ 1 = 9 10 ÷ 1 = ÷ 1 = ÷ 1 = 12 ÷ 2 2 ÷ 2 =
HKCEE Chemistry Volumetric Analysis &
Chemistry FIFTH EDITION by Steven S. Zumdahl University of Illinois
Chemical Quantities or
CALENDAR.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt BlendsDigraphsShort.
1 1  1 =.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt FactorsFactors.
突破信息检索壁垒 -SciFinder Scholar 介绍
Stoichiometry.
The basics for simulations
PP Test Review Sections 6-1 to 6-6
Look at This PowerPoint for help on you times tables
Chapter 7 Chemical Reactions.
Chemical Reactions Chapter 11
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
Solution Chemistry Dealing with mixtures 1. Solutions A solution is a homogenous mixture consisting of a solvent and at least one solute. The solvent.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Progressive Aerobic Cardiovascular Endurance Run
% Composition, Empirical and Molecular Formulas
The Chemicals of Living Cells ©The Wellcome Trust.
"When I play with my cat, who knows whether she is not amusing herself with me more than I with her." Michel Eyquem De Montaigne.
Unit 11 Stoichiometry CP Chemistry.
Before Between After.
Foundation Stage Results CLL (6 or above) 79% 73.5%79.4%86.5% M (6 or above) 91%99%97%99% PSE (6 or above) 96%84%100%91.2%97.3% CLL.
Subtraction: Adding UP
Stoichiometry.
CHAPTER 10 Reactions in Aqueous Solutions I: Acids, Bases & Salts.
Static Equilibrium; Elasticity and Fracture
Essential Cell Biology
Created by Professor William Tam & Dr. Phillis Chang Ch Chapter 12 Alcohols from Carbonyl Compounds Oxidation-Reduction & Organometallic Compounds.
Oxidation-Reduction & Organometallic
Converting a Fraction to %
Created by Professor William Tam & Dr. Phillis Chang Ch Chapter 20 Amines.
Resistência dos Materiais, 5ª ed.
Dr. Wolf's CHM 201 & Ester Hydrolysis in Base: Saponification.
Chapter 20 Amines.
3PbO2 + Cr2(SO4)3 + K2SO4 + H2O  3PbSO4 + K2Cr2O7 + H2SO4
Quiz 9 (2/19/14) 27.If you have an acetate buffer (shown below) and you add a strong acid to the buffer, which way will the reaction shift to maintain.
Chapter 16 Ethers, Epoxides, and Sulfides Preparation of Ethers.
Prentice-Hall © 2007 General Chemistry: Chapter 16 Slide 1 of 52 Philip Dutton University of Windsor, Canada Prentice-Hall © 2007 CHEMISTRY Ninth Edition.
Lecture 36 Combustion Reactions.
Schutzvermerk nach DIN 34 beachten 05/04/15 Seite 1 Training EPAM and CANopen Basic Solution: Password * * Level 1 Level 2 * Level 3 Password2 IP-Adr.
Dr. Mohamed Abd-Elhakeem Faculty of Biotechnology Organic Chemistry Chapter 5.
Presentation transcript:

Afscheidsrede prof. dr. R. A Afscheidsrede prof.dr. R.A. Sheldon hoogleraar Biokatalyse en Organische Chemie December 7, 2007 ‘E Factors, Green Chemistry and Catalysis: Records of the Travelling Chemist’ 7 december 2007 R. A. Sheldon, Rec. Trav. Chem. 2007, 1, 1

Green Chemistry Green chemistry efficiently utilises (preferably renewable) raw materials, eliminates waste and avoids the use of toxic and/or hazardous solvents and reagents in the manufacture and application of chemical products. Anastas and Warner, Eds, Green Chemistry. Theory & Practice, Oxford U. Press, 1998

Sustainability Meeting the needs of the present generation without compromising the needs of future generations to meet their own needs is the goal “What we need is more imagination not more knowledge” Albert Einstein

Do politicians understand the issues? It’s not pollution that is the problem it’s the impurities in our air and water. Dan Quayle

Phloroglucinol Synthesis Ca. 40kg of solid waste per kg phloroglucinol CH3 COOH O2N NO2 O2N NO2 H2N NH2 HO OH K2Cr2O7 Fe/HCl aq.HCl H2SO4 / SO3 - CO2 D T NO2 NO2 NH2 O H TNT phloroglucinol Ca. 40kg of solid waste per kg phloroglucinol HO OH byproducts + Cr2 (SO4)3 + 2KHSO4 + 9FeCl2 + 3NH4Cl + CO2 + 8H2O 392 272 1143 160 44 144 O H MW = 126 Atom Utilisation = 126/2282 = ca. 5% E Factor = ca. 40 product “ To measure is to know ” Lord Kelvin

“Atom for Atom” Syn gas utilisation (1983) 2 CO + 3 H2 HOCH2CH2OH 2 CO + 4 H2 H2C=CH2 + 2H2O 100% 44% Oxygen utilisation (1990) Oxidant % Active O Byproduct H2O2 47 H2O t-BuOOH 18 t-BuOH CH3COOOH 22 CH3COOH NaOCl 22 NaCl KIO4 KIO3 Atom utilisation (1991) 1. PO : Chlorohydrin process CH3 HC=CH2 + Cl2 + H2O CH3CH(OH)CH2Cl + HCl Ca(OH)2 O CH3HC CH2 + CaCl2 + H2O 25% atom utilisation + H2O CH3HC=CH2 + H2O2 O CH3HC CH2 2. PO : Catalytic Oxidation 76% atom utilisation See Chem. Eng. Progr. 1991, 87(12), 11 See also Trost, Science, 1991, 254, 1471

E Factor = kg waste/kg product E Factors E Factor = kg waste/kg product Tonnage E Factor Bulk Chemicals 104-106 <1 - 5 Fine chemical Industry 102-104 5 - >50 Pharmaceutical Industry 10-103 25 - >10 [i] “Another aspect of process development mentioned by all pharmaceutical process chemists who spoke with C&EN, is the need for determining an E Factor”. A. N. Thayer, C&EN, August 6, 2007, pp.11-19. R.A.Sheldon, Chem &Ind, 1992, 903 ; 1997, 12

I Factor = 4.19 R. A. Sheldon, Green Chem, 2007, 9, 1273-1283

The E Factor Is the actual amount of all waste formed in the process, including solvent losses and waste from energy production (c.f. atom utilisation is a theoretical nr.) E = [raw materials-product]/[product] A good way to quickly show (e.g. to students) the enormity of the waste problem Undergraduate Course : “Green Chemistry & Sustainable Technology”

Major Sources of Waste STOICHIOMETRIC ACIDS & BASES STOICHIOMETRIC OXIDANTS & REDUCTANTS - Na2Cr2O7, KMnO4, MnO2 - LiAlH4, NaBH4, Zn, Fe/HCl SOLVENT LOSSES - Air emissions & aqueous effluent 1

The Solution is Catalytic Substitution of conventional Bronsted & Lewis acids by recyclable,non-corrosive solid acids e.g zeolites Atom efficient catalytic processes: -hydration (H2O) reduction (H2),oxidation (O2 ,H2O2) -carbonylation (CO),hydroformylation (CO/H2) -amination (NH3), reductive amination (NH3 /H2) with olefins and (alkyl)aromatics as raw materials Alternative reaction media / biphasic catalysis Biocatalysis, naturally

Research Themes Renewables Cascades Novel Media O2 H2O2 CO H2 H2O Enzymes Catalysis & Green Chemistry Renewables Cascades Chirotechnology Sheldon, Arends and Hanefeld , Green Chemistry And Catalysis, Wiley, New York, 2007

Heterogeneous Catalysis

Sheldon and van Doorn, J.Catal. 31, 427, 1973 M + Peroxometal mechanism 1973 Sheldon, Rec.Trav.Chim.Pays-Bas, 92, 253, 1973 Mimoun, Sharpless + R O H T i ( I V ) / S O2 Sheldon and van Doorn, J.Catal. 31, 427, 1973 Shell SMPO process 1973 Metal Catalyzed Epoxidation H2 + O2 H2O2 Pd/Pt (4nm) TS-1 H2O MeOH O Headwaters/Evonik 2006 TS-1 H2O2 + H2O MeOH O Enichem 1985 Ti-beta, Ti-MCM41, Ti-ITQ, etc van Bekkum, Corma Dakka, Sato, LeBars Redox Molecular Sieves (Zeozymes)

Green Caprolactam Process : Sumitomo v a p o u r O H2O2 / NH3 NOH NH p h a s e O T S - 1 H i g h S i MFI A m o x i a t n B e c k m a n r g t C6H10O + H2O2 + NH3 C6H11NO + 2H2O Atom efficiency = 75% ; E = 0.32 (<0.1) O NOH (NH3OH)2SO4 NH H2SO4 O Atom efficiency =29% ; E = 4.5 Ichihashi and Kitamura,Catal.Today, 73, 23, 2002

Redox Molecular Sieves : Philosophers’ Stones or Trojan horses ? Filtration Test for Heterogeneity: 60 50 40 conversion (%) 30 20 hot 10 cold 30 60 90 120 150 180 Time (min) Lempers (1998) Chen (1995), Elings (1997), Plyuto, Schuchardt Sheldon, Wallau, Arends and Schuchardt, Acc. Chem. Res., 31 (1998) 485-493.

Homogeneous Catalysis

Catalysis in Non-conventional Reaction Media Two challenges : Toxicity and/or hazards of atmospheric and ground water pollution by conventional solvents Separation/recycling of homogeneous catalysts (Biphasic) catalysis in non-conventional media - water - supercritical carbon dioxide (Martyn Poliakoff) - ionic liquids (Ken Seddon) - fluorous biphasic (Istvan Horvath) “The best solvent is no solvent” 5

ten Brink, Arends, Sheldon, Science 287 (2000) 1636 Aqueous Biphasic Cataysis 1. Carbonylation 2. Aerobic Oxidation OH COOH Ibuprofen CO Pd / tppts /H+ R2 H + . 5 O2 R1 O H Pd2+/ L air OH O R 2 R R O + H2O Pd2+ L water R 1 NaO3S S O3 N a NaO3S P S O3Na tppts S O3Na N N Papadogianakis, Verspui (2001) Moiseev ten Brink (2001) ten Brink, Arends, Sheldon, Science 287 (2000) 1636

Catalysis in Ionic Liquids Negligible vapour pressure Designer solvents Catalytic hydroformylation, carbonylation, hydrogenation and biocatalysis R2 OH + + + N N + N N OH N OH R R1 R3 R N + R4 OH R Anions : B F4 , P F6 , R C O , H2 P O4 , N O3 , H O C H2 C O2 2 O O O + OH O + OH OH NH2 O O CaLB in [bmim][BF4] and [bmim][PF6] O Madeira Lau (2003) Seddon RCOOOH RCOOH Product recovery? H2O H2O2 Madeira Lau, van Rantwijk, Seddon, Sheldon, Org.Lett. 2, 4189, 2000 Sheldon, Chem. Comm. 2001, 2399-2407

In situ product removal with scCO2 scCO2 phase OH OAc OAc lipase IL phase scCO2 as mobile phase in batch or continuous operation Reetz et al,Chem.Comm.,2002, 992 Lozano et al,Chem.Comm.,2002, 692

The Miscibility Switch Reactant Carbon dioxide CO2 + Product IL + Catalyst Reactant CO2 P  P  P  CO2 CO2 IL + Catalyst Product + IL IL Ionic liquid + catalyst Product High pCO2 one phase Low pCO2 two phases Reaction Separation Peters & Witkamp

Organocatalysis

Organocatalytic Oxidations Cu(II) / PIPO / O2 PIPO N NH(tert-octyl) (CH2)6 O. 5 No solvent No Br- NaOCl Recyclable Cheap raw material Chimassorb 944 Dijksman (2001) OH H R1 R2 O + “O” + H2O . “O” = NaOCl, m-CPBA, oxone (+ Br -) N van Bekkum et al , Synthesis, 1996, 1153 CH2Cl2 / H2O TEMPO . N O RCH2OH O 2 H l a c s e o x . N RCHO + Laccase : a multicopper oxidase Li (2004), Matijosyte de Vries/Hagen OH H O + . 5 2 TEMPO (5m%) Cu(II) / bipy (5m%) Base / MeCN / H2O Gamez Organocatalytic Oxidations

Biocatalysis CPO phytase subtilisin laccase CaLB HNlase Inventing New Enzymes & Enzymatic Reactions

Why Biocatalysis? Mild conditions: ambient temperature & pressure in water Enzymes are derived from renewable sources and are biodegradable High rates & highly specific : substrate, chemo-, regio-, and enantiospecific Higher quality product Green Chemistry (environmental footprint)

> 3000 tpa If you want to find something new Enzymatic Ammoniolysis BASF Process NH2 Lipase ee > 99% (S) + O NH ee > 99% (R) NaOH glycol-water (2:1), 150oC > 3000 tpa R O O NuH R Nu Ser O Nu = OH, OR, NH2 , RNH, OOH, etc O O NH3/t-BuOH R OEt R NH2 lipase, 40oC Green amide synthesis Enantioselective with amino acid esters Steverink(1995), Hacking (1999) Wegman(2001) If you want to find something new you have to DO something new Edward De Bono

Easy-on-easy-off resolution NHCOCH2Ar H2O NH2 NH2 P h ArCH2COX P h p e n a c y l a s e + P h p H 7 e e > 9 9 % p e n a c y l a s e NH2 p H 1 - 1 1 e e > 9 9 % P h V.Svedas L.van Langen(2001), R.Madeira Lau(2003), H.Ismail(2007) Dynamic Kinetic Resolution - 88 % yield (4 days) - ee product 98 % . NH2 O H N CaLB, 50oC, 96h Nano Pd 10 20 30 40 50 60 70 80 90 100 120 time (h) % yield (amide) Kinetic resolution Dynamic kinetic resolution H.Ismail(2007) Pd –catalyzed racemization of 1-phenethylamine : Murahashi (1983) ; Reetz , DKR (1996).

vanadate phytase Linker 65% ee O C P O ArSCH3 + H2O2 S + H2O A r C H3 sp r g N 2 V L y van de Velde Aksu-Kanbak Correia O C P O ArSCH3 + H2O2 S + H2O A r C H3 N N 99% yield >99% ee FeIII N N S C y s van Deurzen (1996) van de Velde (2000) Heme Low stability Se X OH O OOH H2O2 H2O R1 R2 = N 2 , C F 3 ten Brink (2001) Ser O Linker X = N 2 , C F 3 H S e subtilisin van der Toorn Inventing New Enzymes : Chemomimetic Biocatalysis

Historically: Adapt Process to fit Catalyst Available Catalyst Dream Process

Future: Adapt Catalyst to fit Ideal Process EVOLVE Catalyst Adapted Catalyst Nightmare Process Dream Process Compromise process to accommodate catalyst Adapt catalyst to optimum process Directed Evolution BOC HTS (directed evolution lab.) L.Otten

DNA Shuffling : Evolution in the Fast Lane Repeat gene A HTP Screening Genes From Nature Library of Novel Genes DNA ShufflingTM gene B gene C gene D . Novel Genes Stemmer,Nature,370, 389-391, 1994; Huisman et al (Codexis) See also Reetz, Advan. Catal. 2006, 1-69.

Green Synthesis of Lipitor Intermediate (Codexis) Presidential Green Chemistry Challenge Award 2006 OEt Cl O NADPH NADP+ OH HHDH NC KRED g l u c o s e n a t GDH q . NaCN , pH 7 (>99.9% ee) > 9 % ee KRED = keto reductase ; GDH = glucose dehydrogenase HHDH = halohydrin dehalogenase (non-natural nucleophile) Nature Biotechnol. 2007, 25, 338-334 Huisman, Grate, Lalonde et al (Codexis)

Improving Performance by Directed Evolution: test tube to commercial process with gene shuffling 97% ~80% >90% Isolated yield 0.7 g/L 10 g/L <1 g/L Enzyme loading ~1 min. >1 hr Phase separation time 540 g/L.day 80 g/L.day >240 g/L.day Volumetric Productivity 8 hrs 24 hrs <16 hrs Reaction time 180 g/L 80 g/L 160 g/L Substrate loading Final Performance Initial Performance Process Design Parameter 1. KRED + GDH 92% ~60% >90% Isolated yield 1.2 g/L 130 g/L <1.2 g/L Enzyme loading 670 g/L.day 7 g/L.day >180 g/L.day Volumetric Productivity 5 hrs 72 hrs <16 hrs Reaction time 140 g/L 20 g/L 120 g/L Substrate loading Final Performance Initial Performance Process Design Parameter 2. HHDH

Disadvantages of Enzymes Low operational stability & shelf-life Cumbersome recovery & re-use (batch vs continuous operation) Product contamination Solution : Immobilization

Cross-Linked Enzyme Aggregates (CLEAs) X-linker precipitant aggregate CLEA - Enzyme in solution glutaraldehyde or dextran polyaldehyde as X-linker Enables recycling via filtration Higher productivity No need for highly pure enzyme Simple procedure / widely applicable Stability towards denaturation CLEAS active in: scCO2 (M. Poliakoff) ILs (Sheldon) Sorgedrager (2006), Janssen (2006 ) (CLEA Technologies B.V.)

Examples of Successful CLEAtion Hydrolases Pen. acylases (2) Lipases (7) Esterases (3) Proteases (3) Nitrilases (2) Aminoacylase Phytase Galactosidase Oxidoreductases ADH FDH Glucose oxidase Galactose oxidase Laccase Catalase Chloroperoxidase Lyases R- & S- HnLases PDC DERA Nitrile hydratase Cao, Lopez-Serrano, Mateo, Perez, van Langen, Sorgedrager Janssen, Bode, van Pelt, Chmura, Matijosyte, Aksu-Kanbak, Evolution vs Cleationism

Catalytic Cascade Processes 97% yield / > 99% ee H 2 N O OH OCH3 , 4 % cat. 5 a t m H2 99% yield / 95% ee amidase Catalyst : Rh(monophos) on TUD-1 Simons (2007) H 2 O lipase PS- I(O2CR)2 PS- I RCOOH RCO2OH Kotlewska

Trienzymatic Cascade with a Triple-Decker combi CLEA OH CONH2 OH O CN H2O Pen G amidase HCN /(S)-HnL NLase OH COOH Conv. 96% / ee >99% Chmura, Stolz

Renewables & Green Chemistry : the Biorefinery Fuels CO2 + H2O photo- Biomass Polymers synthesis Bulk & Fine Chemicals Greener products Emons (1992), Arts(1996), Papadogianakis Metrics for renewables ?

Carboxystarch : Safe & Natural Absorbing Polymer (SNAP) OH H H COOH Laccase CLEA TEMPO/O2 [ H O [ H O O O HO H HO H H OH H OH H O H O ] ] n n starch c a r b o x y s t a r c h Non- toxic & biodegradable Green (bio) catalytic process Green raw materials Boumans (TNO) The plan is nothing, the planning is everything Mao Zedong

Enantio- selectivity Environment Think Green E The E Factor Economy Elegance It’s better to travel one mile than to read a thousand books Confucius

So it goes…………

Collaboration & Funding EU IOP Katalyse IOP Koolhydraten Hoechst Celanese

successful man there is behind every successful man there is an astonished woman