Wide-field multiphoton imaging through scattering media without correction by Adrià Escobet-Montalbán, Roman Spesyvtsev, Mingzhou Chen, Wardiya Afshar.

Slides:



Advertisements
Similar presentations
Fig. 3 Length modulates flow pattern.
Advertisements

Fig. 1 Characterization of the device structure.
Fig. 4 Ballistic simulation of BP FETs.
Fig. 6 Long-term THW test and wear analysis.
Fig. 2 Characterization of fs-laser–induced degradation.
Fig. 3 Projected gains in MCP.
Fig. 1 Pump-probe signatures of vermilion (red HgS), black HgS, and metallic Hg. Pump-probe signatures of vermilion (red HgS), black HgS, and metallic.
Fig. 3 Oil, gas, and FP water variations with time.
Fig. 1 Map of water stress and shale plays.
Origin of the asymmetry and determination of the critical angle
Fig. 3 Saturation velocity of BP FETs.
Fig. 3 Electron PSD in various regions.
Fig. 3 Scan rate effects on the layer edge current.
Fig. 2 Principle of attenuation-compensation for a Bessel light sheet.
Interactive morphogenesis in Ch-CNC droplets laden with magnetic NPs
Fig. 2 Device characteristics.
Fig. 2 Full-frame images recording the violation of a Bell inequality in four images. Full-frame images recording the violation of a Bell inequality in.
Fig. 3 Gate voltage dependence of the areal iDMI and PMA.
Fig. 4 Characterization of nanowood.
Fig. 3 Phase-contrast imaging.
Fig. 1 Distribution of total and fake news shares.
Fig. 2 Overview of writing, reading and erasing procedure.
Fig. 3 Forward model. Forward model. Summary of the resampled Monte Carlo simulations shown as histograms for epoch 1 (red), epoch 2 (green), and epoch.
Fig. 3 Photon number statistics resulting from Fock state |l, S − l〉 interference. Photon number statistics resulting from Fock state |l, S − l〉 interference.
Fig. 2 2D QWs of different propagation lengths.
Fig. 2 Camera-based photothermal imaging.
Fig. 1 Structure of L10-IrMn.
Fig. 2 Solid-state properties of polymer thin films.
Fig. 2 EUV TG signal. EUV TG signal. Black lines in (A), (B), and (C) are the EUV TG signals from Si3N4 membranes at LTG = 110, 85, and 28 nm, respectively,
Fig. 4 EUV TG signal from Si.
Fig. 6 WPS imaging of different chemical components in living cells.
Fig. 3 Comparison of the reflective properties.
Fig. 4 Control analyses ensured that the relation between rotational acceleration and changes in FA does not depend on thresholds. Control analyses ensured.
Fig. 1 Plasmonic pumping experiment and photoinduced near-field optical response in Hg0.81Cd0.19Te. Plasmonic pumping experiment and photoinduced near-field.
Fig. 3 ET dynamics on the control and treatment watersheds during the pretreatment and treatment periods. ET dynamics on the control and treatment watersheds.
Fig. 5 Wave speed analysis.
Fig. 5 In-plane angle dependence of SOT efficiency (θDL,m) and resonance condition (Hres). In-plane angle dependence of SOT efficiency (θDL,m) and resonance.
Fig. 1 X-ray scattering and EBSD analyses of the bulk Fe25Co25Ni25Al10Ti15 HEA. X-ray scattering and EBSD analyses of the bulk Fe25Co25Ni25Al10Ti15 HEA.
Fig. 1 Experimental setup.
Fig. 4 Two-color photoinitiation and photoinhibition enable controllable, far-surface patterning of complex 3D structures. Two-color photoinitiation and.
Fig. 3 GIWAXS pattern of perovskite films with varied ligands.
Fig. 1 Cross-sectional images of He-implanted V/Cu/V samples.
Fig. 2 Characterization of ZnxCo1−xO NRs.
Fig. 4 Giant optical chirality.
Fig. 3 Avoidable fraction of heat-related deaths if the current trajectory warming of 3°C is brought down to the 1.5° or 2°C Paris Agreement thresholds.
by Alan She, Shuyan Zhang, Samuel Shian, David R
Direct imaging of ultrafast lattice dynamics
Fig. 2 Images of the optical field at transmitter and receiver.
Toward broadband, dynamic structuring of a complex plasmonic field
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Fig. 3 Relationships between Q10 and C distribution in aggregates.
Fig. 2 NP characterization.
Fig. 1 MIR photovoltaic detector based on b-AsP.
Fig. 1 Structural and electrical properties of Bi2Se3/BaFe12O19.
Fig. 2 Realization of asymmetric photon transport.
Long-range structural order control of SS-annealed cylinder patterns
Fig. 2 Normal-incidence 2PPE PEEM results.
Fig. 1 Light and CRIS of the relationship between magnetite and MMC in the meteorites studied. Light and CRIS of the relationship between magnetite and.
Fig. 3 Experimental verification.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 5 Superpositions of OAM.
Fig. 4 Single-particle contact angle measurements.
Fig. 2 Supraballs and films from binary SPs.
Fig. 1 Schematic structure of a fluorescently labeled eGLP1-conjugated MALAT1 ASO and internalization of fluorescent eGLP1 and eGLP1-MALAT1-ASO. Schematic.
Fig. 3 High-tide flood extent at water levels of 1. 73, 2. 03, 2
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
Fig. 1 Design principle and SEM characterization of super-origami DNA nanostructures with n-tuples. Design principle and SEM characterization of super-origami.
Fig. 4 Characterization and SERS spectra of tetrameric metamolecules.
Fig. 1 Doping schematics and optical properties.
Fig. 4 Effects of individual picosecond and microsecond pulses.
Presentation transcript:

Wide-field multiphoton imaging through scattering media without correction by Adrià Escobet-Montalbán, Roman Spesyvtsev, Mingzhou Chen, Wardiya Afshar Saber, Melissa Andrews, C. Simon Herrington, Michael Mazilu, and Kishan Dholakia Science Volume 4(10):eaau1338 October 12, 2018 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).

Fig. 1 Working principle of TRAFIX. Working principle of TRAFIX. (A) A femtosecond laser beam is expanded onto a spatial light modulator (SLM) that generates Hadamard patterns. Subsequently, the beam is diffracted from a grating, and the Hadamard patterns are projected onto a fluorescent sample after propagating through a scattering medium. Fluorescent light emitted by the sample is collected by the same objective after passing through the scattering medium a second time (epifluorescence geometry), and the total intensity is measured by a single-pixel detector. (B) A TF beam propagates through a turbid medium with minimal distortion, retaining the integrity of illumination patterns in the sample plane. Emitted fluorescent photons scatter as they propagate back through the tissue. In contrast to standard TF microscopy, TRAFIX tolerates scrambling of back-propagating light since only an intensity measurement is performed. In a single-pixel measurement, the fluorescent target is sequentially illuminated with Hadamard patterns (ψn), and the total intensity detected is stored as a coefficient (ωn). Gray background in the second column denotes regions of zero intensity. By adding up the Hadamard patterns weighted by their respective coefficients, an image of the fluorescent sample is reconstructed. Adrià Escobet-Montalbán et al. Sci Adv 2018;4:eaau1338 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).

Fig. 2 Images of fluorescent microscopic samples through scattering phantoms. Images of fluorescent microscopic samples through scattering phantoms. Fluorescent beads of 400 nm in diameter and fixed HEK293T/17-GFP cells were imaged through 500- and 540-μm of scattering phantoms, respectively. (A and F) Images taken from the reference imaging system under uniform TF illumination across the FOV. Exposure time was set to 20 s, and camera binning was 4 × 4 (beads) and 2 × 2 (cells). (B to E, G, and H) Images obtained in epifluorescence configuration with TRAFIX using a Hadamard basis containing 4096 illumination patterns. They were reconstructed with different CRs corresponding to 100% (CR = 1), 50% (CR = 2), 25% (CR = 4), or 12.5% (CR = 8) of the total patterns. Each measurement under individual illumination patterns was taken with a binning of 64 × 64 and an exposure time of 0.5 s. The spacing between beads was measured in all five images obtaining deviations smaller than 3% from the reference image (table S3). The diameters of the cells in (F) were measured to be 20.7 and 14.3 μm, respectively, and their values in (G) and (H) differ less than 4 and 12% from the reference value (table S2). The SBR is shown for all reconstructed images. Scale bars, 10 μm. Adrià Escobet-Montalbán et al. Sci Adv 2018;4:eaau1338 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).

Fig. 3 Images of fluorescent microscopic samples through unfixed human colon tissue. Images of fluorescent microscopic samples through unfixed human colon tissue. Fluorescent beads of 400 nm in diameter and fixed HEK293T/17-GFP cells were imaged through 250 and 200 μm of human colon tissue, respectively. (A and C) Images taken from the reference imaging system under uniform TF illumination across the FOV. Camera binning in (A) was set to 4 × 4, and exposure time was 5 s. No camera binning was used in (C), and exposure time was 15 s. (B and D) Images obtained with TRAFIX using a Hadamard basis containing 1024 and 4096 illumination patterns, respectively. All patterns were used for image reconstruction (CR = 1). Camera binning for each Hadamard pattern was set to 64 × 64, and exposure time values were (B) 1 s and (D) 0.75 s. The spacing between beads and the diameter of cells were measured to assess image quality (tables S3 and S2, respectively). The SBR is shown for all reconstructed images. Scale bars, 10 μm. Adrià Escobet-Montalbán et al. Sci Adv 2018;4:eaau1338 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).

Fig. 4 Comparison of a hidden object and the retrieved images through fixed rat brain tissue. Comparison of a hidden object and the retrieved images through fixed rat brain tissue. (A) Reference image of a fluorescent micropattern without any scattering sample. (B) Image obtained by conventional TF microscopy (i.e., under uniform wide-field TF illumination with wide-field detection in epifluorescence configuration) through 400 μm of fixed rat brain tissue. (C and D) Reconstructed images obtained with TRAFIX through 200 and 400 μm of rat brain tissue, respectively. The two retrieved images were reconstructed using a full Hadamard basis containing 1024 patterns. Camera binning was set to 64 × 64, and exposure time values were (C) 0.2 s and (D) 1 s. Small intensity variations in the reconstructed images arise from inhomogeneities in the fluorescent micropattern originated in the imprinting process. Larger intensity variations are due to inhomogeneities in light transmission through the highly anisotropic scattering medium. This also applies to figs. S7, S9, S10, and S12. The SBR is shown for all reconstructed images. Scale bar, 10 μm. Adrià Escobet-Montalbán et al. Sci Adv 2018;4:eaau1338 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).

Fig. 5 Numerical simulation of TRAFIX in scattering media. Numerical simulation of TRAFIX in scattering media. (A) Simulated TF laser beams at the focal plane through a 400-μm-thick brain tissue. The solid red curve indicates the smoothed-out lateral beam profile, taking all monochromatic components of the laser pulse into account. (B) Total fluorescence power collected with an NA = 0.8 microscope objective for different thicknesses of brain tissue. Incident laser power at sample surface is set to 100 arbitrary units (a.u.). Adrià Escobet-Montalbán et al. Sci Adv 2018;4:eaau1338 Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).