The University of Tokyo Norio Narita

Slides:



Advertisements
Similar presentations
THESIS – the Terrestrial and Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft a concept for a joint NASA/ESA exoplanet characterization mission.
Advertisements

Ge/Ay133 What can transit observations tell us about (exo)-planetary science? Part II – “Spectroscopy” & Atmospheric Composition/Dynamics Kudos to Heather.
Exoplanet Atmospheres: Insights via the Hubble Space Telescope Nicolas Crouzet 1, Drake Deming 2, Peter R. McCullough 1 1 Space Telescope Science Institute.
Tim Healy Tony Perry Planet Survey Mission. Introduction Finding Planets Pulsar Timing Astrometry Polarimetry Direct Imaging Transit Method Radial Velocity.
Exploring a Nearby Habitable World …. Orbiting an M-dwarf star Drake Deming NASA’s Goddard Space Flight Center.
Somak Raychaudhury  Two-body problem  Binary stars  Visual  Eclipsing  Spectroscopic  How to find extrasolar planets.
Lecture 14: Searching for planets orbiting other stars III: Using Spectra 1.The Spectra of Stars and Planets 2.The Doppler Effect and its uses 3.Using.
Extrasolar Planets.I. 1.What do we know and how do we know it. 2.Basic planetary atmospheres 3.Successful observations and future plans.
Lecture 11: The Discovery of the World of Exoplanets
Astronomy News 2007/03/20 HEAG meeting Astronomers Puzzled by Spectra of Transiting Planet Orbiting Nearby Star.
Reflected Light From Extra Solar Planets Modeling light curves of planets with highly elliptical orbits Daniel Bayliss, Summer Student, RSAA, ANU Ulyana.
Spectroscopic Observations of HD b Lewis Kotredes Ge/Ay 132 Final.
Detecting molecules in the atmospheres of transit Exoplanets Giovanna Tinetti University College London Mao-Chang Liang Academia Sinica, Taiwan.
Lecture 16: Searching for Habitable Planets: Remote Sensing Methods and parameters we can measure Mean density measurements: internal structure Measurements.
Astronomy190 - Topics in Astronomy Astronomy and Astrobiology Lecture 19 : Extrasolar Planets Ty Robinson.
Orbital motion, absolute mass & high-altitude winds of HD b Ignas Snellen, Remco de Kok, Ernst de Mooij, Simon Albrecht Nature – May 2010.
Norio Narita (NAOJ Fellow) Special Thanks to IRD Transit Team Members
What stellar properties can be learnt from planetary transits Adriana Válio Roque da Silva CRAAM/Mackenzie.
Nadiia Kostogryz & Svetlana Berdyugina
Lecture 34. Extrasolar Planets. reading: Chapter 9.
Adriana V. R. Silva CRAAM/Mackenzie COROT /11/2005.
SPICA Science for Transiting Planetary Systems Norio Narita Takuya Yamashita National Astronomical Observatory of Japan 12009/06/02 SPICA Science Workshop.
Extrasolar planets. Detection methods 1.Pulsar timing 2.Astrometric wobble 3.Radial velocities 4.Gravitational lensing 5.Transits 6.Dust disks 7.Direct.
Detection of H α Absorption in Exoplanetary Exospheres Seth Redfield Wesleyan University Adam Jensen (Wes) Mike Endl (UT) Bill Cochran (UT) Lars Koesterke.
The Doppler Method, or Radial Velocity Detection of Planets: I. Technique 1. Keplerian Orbits 2. Spectrographs/Doppler shifts 3. Precise Radial Velocity.
Search for planetary candidates within the OGLE stars Adriana V. R. Silva & Patrícia C. Cruz CRAAM/Mackenzie COROT /11/2005.
Subaru HDS Transmission Spectroscopy of the Transiting Extrasolar Planet HD b The University of Tokyo Norio Narita collaborators Yasushi Suto, Joshua.
1B11 Foundations of Astronomy Extrasolar Planets Liz Puchnarewicz
1 An emerging field: Molecules in Extrasolar Planets Jean Schneider - Paris Observatory ● Concepts and Methods ● First results ● Future perspectives.
National Aeronautics and Space Administration Mark Swain THESIS – the Terrestrial and Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft characterizing.
Simultaneous Subaru/MAGNUM Observations of Extrasolar Planetary Transits Norio Narita (U. Tokyo, JSPS Fellow, Japan) Collaborators Y. Ohta, A. Taruya,
Transit Spectroscopy w/ WFC3 March 11, 2014 Avi M. Mandell NASA GSFC Collaborators: Korey Haynes Evan Sinukoff Drake Deming Adam Burrows Nikku Madhusudhan.
Searching for Brown Dwarf Companions to Nearby Stars Michael W. McElwain, James E. Larkin & Adam J. Burgasser (UC Los Angeles) Background on Brown Dwarfs.
Table 1. Observation Parameters Searching for Radial Velocity Variations in  Carinae Rosina C. Iping (CUA/NASA/GSFC), George Sonneborn, Ted R. Gull (NASA/GSFC),
Testing Planet Migration Theories by Observations of Transiting Exoplanetary Systems 1/39 University of Tokyo Norio Narita.
EXTRASOLAR PLANETS FROM DOME -C Jean-Philippe Beaulieu Institut d’Astrophysique de Paris Marc Swain JPL, Pasadena Detecting extrasolar planets Transit.
Corot Week 9 ESTEC 5-9 Dec 2005 Frédéric Pont Geneva Observatory Lessons from the OGLE planetary transit survey Francois Bouchy (Marseille/OHP), Nuno Santos.
A Dedicated Search for Transiting Extrasolar Planets using a Doppler Survey and Photometric Follow-up A Proposal for NASA's Research Opportunities in Space.
Lecture 14: The Discovery of the World of Exoplanets Indirect methods for planet detection The Astrometric method The Doppler shift method The Transit.
Extrasolar Planets The Search For Ever since humans first gazed into the night sky, the question of whether we are alone in the universe has remained unanswered.
23 November 2015what do we know from the exo-planets? Florian Rodler What do we know about the exo-planets? & How to detect direct signals from exo-planets?
Extrasolar planets. Detection methods 1.Pulsar Timing Pulsars are rapidly rotating neutron stars, with extremely regular periods Anomalies in these periods.
Measuring Magnetic fields in Ultracool stars & Brown dwarfs Dong-hyun Lee.
Spectroscopic Transits
Spin-Orbit Alignment Angles and Planetary Migration of Jovian Exoplanets Norio Narita National Astronomical Observatory of Japan.
Discovery and Observation Including Techniques Jennifer Bergman Korbie Dannenberg Travis Patrick.
Spectroscopy of extrasolar planets atmosphere
Looking for trees in the forest LION, BM Seminar 5 June 2008 Ruth Buning (LCVU, Amsterdam) Wim Ubachs (LCVU, Amsterdam) Michael Murphy (Swinburne University,
Extrasolar Planets & The Power of the Dark Side David Charbonneau California Institute of Technology Fermilab – 24 April 2002.
The University of Tokyo Norio Narita
The Critical Importance of Data Reduction Calibrations In the Interpretability of S-type Asteroid Spectra Michael J. Gaffey Space Studies Department University.
2003 UB313: The 10th Planet?. Extra-Solar or Exoplanets Planets around stars other than the Sun Difficult to observe Hundreds discovered (> 2000 so far)
Companion Candidates around Transiting Planetary Systems: SEEDS First/Second Year Results Norio Narita (NAOJ) Yasuhiro H. Takahashi (Univ. of Tokyo) and.
Characterisation of hot Jupiters by secondary transits observed with IRIS2 Lucyna Kedziora-Chudczer (UNSW) George Zhou (Harvard-Smithsonian CfA) Jeremy.
Observing the Atmospheres of Transiting Exoplanets
Searching for transiting Extra-Solar planets “Pre-OmegaTranS”
Mathew A. Malkan (UCLA) and Sean T. Scully (JMU)
Measuring the Spin-Orbit Alignments of Transiting Exoplanetary Systems: The Case for TrES-1 Norio Narita, Keigo Enya, Bun'ei Sato, Yasuhiro Ohta, Joshua.
IAU253 Transiting Planets: May
1 / 12 Simultaneous Spectroscopic & Photometric Observations of a Transit of TrES-1b Norio Narita (UT, JSPS Fellow) Collaborators K. Enya (JAXA), B. Sato.
WASP-12.
Past and Future Studies of Transiting Extrasolar Planets
Extra-Solar Planetary Transits
SPICA for Transiting Exoplanets: Which SPICA instruments are useful?
Lunar Observation Activities with a Small Satellite and a Planetary Exploration Satellite. Hodoyoshi-1 Hayabusa-2 Toru Kouyama, AIST
What is an Exoplanet? Why is their search important?
Direct imaging discovery of a Jovian exoplanet within a triple-star system by Kevin Wagner, Dániel Apai, Markus Kasper, Kaitlin Kratter, Melissa McClure,
The Search for Exomoons
Fig. 3 Near-infrared spectrum of EM at 4.5 days after merger.
Subaru HDS Ground-based Transmission Spectroscopy
Presentation transcript:

The University of Tokyo Norio Narita Subaru HDS Transmission Spectroscopy of the Transiting Extrasolar Planet HD 209458b The University of Tokyo Norio Narita collaborators Yasushi Suto, Joshua N. Winn, Edwin L. Turner, Wako Aoki, Christopher J. Leigh, Bun’ei Sato, Motohide Tamura, Toru Yamada

Contents Introduction Subaru Observations Data Reduction and Results Extrasolar Planets Transmission Spectroscopy Past Researches Subaru Observations Data Reduction and Results Correction of Instrumental Profiles Calculation of Difference Light Curves Resultant Upper limits Conclusions and Implications

Extrasolar Planetary Science Extrasolar Planets are planets orbiting around main sequence stars other than the Sun. The first extrasolar planet, 51 Peg. b, was discovered by Michel Mayor et al. in 1995. The radial velocity curve of 51 Peg. by California & Carnegie Planet Search Team.

Motivation for Researches So far 136 exoplanetary systems have been identified. We already know that extrasolar planets do exist in the universe, but we do not have enough observational information. What are there in extrasolar planets? Transmission spectroscopy of transiting extrasolar planets is one of the best clues to study nature of extrasolar planets.

Transmission Spectroscopy A method to search for atmospheric components of extrasolar planets. At least in principle, one can detect atmospheric components as excess absorption in the in-transit spectra.

Our Target HD 209458 Basic data It is the first extrasolar planetary system in which planetary transits by the companion have been found. Basic data HD209458 G0V (Sun-like star) V = 7.64 HD209458b Orbital Period 3.52474541 ± 0.00000025 days inclination 86.1 ± 0.1 deg Mass 0.69 ± 0.05 MJ Radius 1.32 ± 0.05 RJ from Extra-solar Planet Catalog by Jean Schneider

Past Researches From Hubble Space Telescope 2002 An excess absorption of 0.02% in Na D lines was reported. 2003 A strong additional Ly alpha absorption of 15% was found. 2004 Oxygen and Carbon were detected as well. Charbonneau et al. 2002 Vidal-Madjar et al. 2003 Vidal-Madjar et al. 2004 From ground-based telescopes For the cores of atomic absorption lines (0.3Å) Bundy & Marcy (2000) Keck I /HIRES < 3 % Moutou et al. (2001) VLT /UVES ~ 1 %

Subaru Observations One night observation covering an entire planetary transit was conducted in Oct. 2002. Orbital Period 3.5 days We obtained total 30 spectra: in 12 out 12 half 6 Observing Parameters Wavelength 4100~6800Å Spectral Resolution 45000 SNR / pix ~ 350 Exposure time ~ 500 The phase of observations Narita et al. 2005

Our Advantage and Uniqueness Our observing strategy We observed before, during and after the transit in a single night and cover a larger range of wavelength (the entire optical band). It is indeed unique and the first attempt for transmission spectroscopy. This strategy enable us to effectively monitor, interpolate and remove large instrumental variations as detailed later.

Create a template spectrum from all of the raw spectra. Data Reduction Scheme Create a template spectrum from all of the raw spectra. Calibrate the template spectrum in total flux and wavelength shift matched to each spectrum. Calculate residual spectrum and integrate the residual at specific atomic lines.

Comparison of Two Spectra Red and Blue : two spectra taken 2.5 hours apart Green : ratio spectra (Blue / Red) 10% Winn et al. 2004

Correction Method In order to correct the instrumental profiles, we have established an empirical correction method. S1 and S2 denote each spectrum, while R = S1/S2, then (flux calibration) (wavelength calibration)

Correction Result We could limit instrumental variations almost within the Poisson noise level. Winn et al. 2004

planetary orbital phase Difference Spectra time planetary orbital phase We integrate residual over this region. template telluric Narita et al. 2005

Difference Light Curves For example: difference light curves of Na D lines. time Narita et al. 2005 There is no transit-related excess absorption (blue region).

Upper Limits Comparison with previous results for 0.3 angstrom bandwidth (Bundy and Marcy 2000) Narita et al. 2005 Our upper limits are the most stringent so far from ground-based optical observations.

Check of the Results We injected an artificial signal of 0.03% and 0.2% absorption into several spectra. Narita et al. 2005 We verified that our reduction and analysis procedure do not remove or dilute real signals.

Conclusion and Implication We performed the first study of transmission spectroscopy in a transiting extrasolar planet using Subaru Telescope. Our observing strategy had some advantage compared with previous investigators. However, we could not detect any transit-related signatures. Our results may imply a limit of photometric accuracy from ground-based observations. Next we intend to investigate spectroscopic changes caused by planetary transits (i.e. the Rossiter effect).