THE HYPERBOLA.

Slides:



Advertisements
Similar presentations
What is it?.
Advertisements

Conics Hyperbola. Conics Hyperbola Cross Section.
Hyperbolas Sec. 8.3a. Definition: Hyperbola A hyperbola is the set of all points in a plane whose distances from two fixed points in the plane have a.
Colleen Beaudoin February,  Review: The geometric definition relies on a cone and a plane intersecting it  Algebraic definition: a set of points.
Hyperbola – a set of points in a plane whose difference of the distances from two fixed points is a constant. Section 7.4 – The Hyperbola.
Hyperbolas and Rotation of Conics
10-4 Hyperbolas Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2.
10.4 Hyperbolas JMerrill Definition A hyperbola is the set of all points in a plane, the difference of whose distances from two distinct fixed point.
Warm Up Find the distance between (0, -2) & (4, 3)
10.5 Hyperbolas What you should learn: Goal1 Goal2 Graph and write equations of Hyperbolas. Identify the Vertices and Foci of the hyperbola Hyperbolas.
11.4 Hyperbolas ©2001 by R. Villar All Rights Reserved.
Hyperbolas Topic 7.5.
10-4 Hyperbolas Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2.
10.3 Hyperbolas. Circle Ellipse Parabola Hyperbola Conic Sections See video!
What type of conic is each?. Hyperbolas 5.4 (M3)
Section 9-5 Hyperbolas. Objectives I can write equations for hyperbolas I can graph hyperbolas I can Complete the Square to obtain Standard Format of.
Lesson 9.3 Hyperbolas.
Sullivan PreCalculus Section 9.4 The Hyperbola Objectives of this Section Find the Equation of a Hyperbola Graph Hyperbolas Discuss the Equation of a Hyperbola.
Definition A hyperbola is the set of all points such that the difference of the distance from two given points called foci is constant.
HYPERBOLA. PARTS OF A HYPERBOLA center Focus 2 Focus 1 conjugate axis vertices The dashed lines are asymptotes for the graphs transverse axis.
Hyperbolas 9.3. Definition of a Hyperbola A hyperbola is the set of all points (x, y) in a plane, the difference of whose distances from two distinct.
Advanced Geometry Conic Sections Lesson 4
Chapter Hyperbolas.
THE HYPERBOLA. A hyperbola is the collection of all points in the plane the difference of whose distances from two fixed points, called the foci, is a.
Hyberbola Conic Sections. Hyperbola The plane can intersect two nappes of the cone resulting in a hyperbola.
Write the standard equation for a hyperbola.
Hyberbola Conic Sections. Hyperbola The plane can intersect two nappes of the cone resulting in a hyperbola.
Precalculus Unit 5 Hyperbolas. A hyperbola is a set of points in a plane the difference of whose distances from two fixed points, called foci, is a constant.
Hyperbolas. Hyperbola: a set of all points (x, y) the difference of whose distances from two distinct fixed points (foci) is a positive constant. Similar.
10.5 Hyperbolas p.615 What are the parts of a hyperbola? What are the standard form equations of a hyperbola? How do you know which way it opens? Given.
Section 10.4 Last Updated: December 2, Hyperbola  The set of all points in a plane whose differences of the distances from two fixed points (foci)
9.3 Hyperbolas Hyperbola: set of all points such that the difference of the distances from any point to the foci is constant.
An Ellipse is the set of all points P in a plane such that the sum of the distances from P and two fixed points, called the foci, is constant. 1. Write.
9.4 THE HYPERBOLA.
6-3 Conic Sections: Ellipses
THE.
Writing the Equation of an Hyperbola
THE HYPERBOLA.
Hyperbolas 4.4 Chapter 10 – Conics. Hyperbolas 4.4 Chapter 10 – Conics.
Ch 4: The Hyperbola Objectives:
Hyperbolas.
10.3 The Hyperbola.
6-3 Conic Sections: Ellipses
Ellipses & Hyperbolas.
Hyperbolas.
31. Hyperbolas.
distance out from center distance up/down from center
9.5A Graph Hyperbolas Algebra II.
Hyperbola Last Updated: March 11, 2008.
Conic Sections: The Hyperbola
10-5 Hyperbolas Hubarth Algebra II.
MATH 1330 Section 8.3.
Sullivan Algebra and Trigonometry: Section 11.3
10-4 Hyperbolas Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2.
MATH 1330 Section 8.3.
Geometric Definition of a Hyperbola
U5D5 Have out: Bellwork: Answer the following for the equation:
31. Hyperbolas.
Chapter 10 Conic Sections.
Hyperbolas Chapter 8 Section 5.
Hyperbolas.
Hyperbolas.
Chapter 10 Conic Sections.
Section 11.6 – Conic Sections
5.4 Hyperbolas (part 1) Definition: A hyperbola is the set of points P(x,y) in a plane such that the absolute value of the difference between the distances.
5.4 Hyperbolas (part 1) Definition: A hyperbola is the set of points P(x,y) in a plane such that the absolute value of the difference between the distances.
Chapter 10 Conic Sections.
M3CSD5 Have out: Bellwork: Answer the following for the equation:
Hyperbolas 12-4 Warm Up Lesson Presentation Lesson Quiz
The constant sum is 2a, the length of the Major Axis.
Presentation transcript:

THE HYPERBOLA

A hyperbola is the collection of all points in the plane the difference of whose distances from two fixed points, called the foci, is a constant. This is the same definition as an ellipse except we have the difference is always constant instead of the sum. The hyperbola has two symmetric parts called branches. Each branch has a vertex and a focus. The axis that contains the vertices is called the transverse axis.

PARTS OF A HYPERBOLA The black dashes lines are asymptotes for the graphs. conjugate axis vertices vertices transverse axis center foci foci

The equation for a hyperbola can be derived by using the definition and the distance formula. The resulting equation is: This looks similar to the ellipse equation but notice the sign difference. To graph a hyperbola, make a rectangle that measures 2a by 2b as a sketching aid and draw the diagonals. These are the asymptotes. b c a a b

Find the vertices and foci and graph the hyperbola: The ends of the transverse axis are the vertices and the axis is 2a long. From the center the ends of the transverse axis are "a" each direction. "a" is the square root of this value From the center the ends of the conjugate axis are "b" each direction. "b" is the square root of this value a b (-3, 0) (3, 0) To find the foci, they are "c" away from the center in each direction. Find "c" by the equation: Make a rectangle & draw diagonals for the asymptotes.

What is the slope of this line? Let's find the equations of the asymptotes. They are lines with y intercept of 0. The second line has the same slope only negative. What is the slope of this line? hint: rise over run Can you see this would be b over a or in this case, up two, over three or 2/3? a b (-3, 0) (3, 0)

horizontal transverse axis vertical transverse axis The center of the hyperbola may be transformed from the origin. The equation would then be: horizontal transverse axis vertical transverse axis The axis is determined by the first term NOT by which denominator is the largest. If the x term is positive it will be horizontal, if the y term is the positive term it will be vertical. The axis is determined by the first term NOT by which denominator is the largest. If the x term is positive it will be horizontal, if the y term is the positive term it will be vertical.

Find the center, foci, vertices and graph the ellipse complete the square on the x terms and then on the y terms 1 1 1 1 We grouped the y terms and factored out a 4 and grouped the x terms and factored out a -3. The y squared term is first because it is positive. The right hand side must be a 1 so divide all terms by 12 1 12 12 12 4 3 This is now in standard form and we are ready to find what we need and graph (next screen)

Make the rectangle and asymptotes to help you graph The center is at (h, k). In this case (1, -1). this is a2 so a = square root of 3 this is b2 so b = 2 a = square root 3 so the vertices (on the transverse axis) are square root of 3 each way from the center. Since it is the y term that is positive, we move square root of 3 each way in the y direction. so vertices are: To find foci: (1, -1) So foci are: Make the rectangle and asymptotes to help you graph