Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.

Slides:



Advertisements
Similar presentations
Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
Advertisements

Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells  R. Kuroda, M.D.,
Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering  J.K. Mouw, M.S., N.D. Case, Ph.D., R.E. Guldberg,
Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation  P. Bernstein, C. Sticht,
Hypoxia reduces the inhibitory effect of IL-1β on chondrogenic differentiation of FCS- free expanded MSC  T. Felka, R. Schäfer, B. Schewe, K. Benz, W.K.
Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review  Y. Zhu, M. Yuan, H.Y. Meng, A.Y. Wang,
Chondrocytes extract from patients with osteoarthritis induces chondrogenesis in infrapatellar fat pad-derived stem cells  E. López-Ruiz, M. Perán, J.
Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal.
The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-β3  E.G. Lima, M.Phil., M.S., L. Bian,
Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering.
Hypoxia reduces the inhibitory effect of IL-1β on chondrogenic differentiation of FCS- free expanded MSC  T. Felka, R. Schäfer, B. Schewe, K. Benz, W.K.
Mesenchymal stromal cells for cartilage repair in osteoarthritis
Z. Zhang, Y. Kang, Z. Zhang, H. Zhang, X. Duan, J. Liu, X. Li, W. Liao 
Immunomodulatory effect of mesenchymal stem cells following intra-articular injection in a model of osteoarthritis: a potential role for apoptosis  P.
Subtractive gene expression profiling of articular cartilage and mesenchymal stem cells: serpins as cartilage-relevant differentiation markers  S. Boeuf,
Chitosan–glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects 
A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair  M.B. Schmidt, Ph.D.,
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
K.A. Payne, D.M. Didiano, C.R. Chu  Osteoarthritis and Cartilage 
G.-I. Im, H.-J. Kim  Osteoarthritis and Cartilage 
Aging-related inflammation in osteoarthritis
NEL-like molecule-1-modified bone marrow mesenchymal stem cells/poly lactic-co- glycolic acid composite improves repair of large osteochondral defects.
Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture  Dr R.L. Mauck, Ph.D., X. Yuan, Dr.
Differentiation potential of human muscle-derived cells towards chondrogenic phenotype in alginate beads culture  R. Andriamanalijaona, Ph.D., E. Duval,
H.H. Lee, M.J. O'Malley, N.A. Friel, C.R. Chu 
P. C. Kreuz, C. Gentili, B. Samans, D. Martinelli, J. P. Krüger, W
Proinflammatory cytokines inhibit osteogenic differentiation from stem cells: implications for bone repair during inflammation  D.C. Lacey, P.J. Simmons,
Human synovial fluid derived mesenchymal stem cells expanded under low oxygen conditions and in a serum-free environment exhibit enhanced lineage-specific.
Synthetic triterpenoids, CDDO-Imidazolide and CDDO-Ethyl amide, induce chondrogenesis  N. Suh, S. Paul, H.J. Lee, T. Yoon, N. Shah, A.I. Son, A.H. Reddi,
A. H. Huang, B. S. , M. Yeger-McKeever, M. D. , A. Stein, R. L
Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells  R. Kuroda, M.D.,
Transcription factor SPB-x is a key molecule inducing hypertrophy of differentiated chondrocyte from MSC  G.-I. Im, J.-M. Lee, J.-M. Ahn, E.-A. Kim  Osteoarthritis.
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
Effect of self assembled peptide-mesenchymal stem cell complex on delaying the progression of osteoarthritis  S. Kim, S. Lee, Y. Jung, J. Kim, S. Kim 
Involvement of Gas7 along the ERK1/2 MAP kinase and SOX9 pathway in chondrogenesis of human marrow-derived mesenchymal stem cells  Y. Chang, M.D., S.W.N.
Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair  C. Candrian, M.D., E. Bonacina, B.Sc.,
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
Z. Zhang, W. Liao, Z. Zhang, X. Duan, C. Hou 
Immunomodulatory effect of mesenchymal stem cells following intra-articular injection in a model of osteoarthritis: a potential role for apoptosis  P.
Effect of self-assembling peptide, chondrogenic factors, and bone marrow-derived stromal cells on osteochondral repair  R.E. Miller, A.J. Grodzinsky,
The chondrogenic repair response of undifferentiated mesenchymal cells in rat full- thickness articular cartilage defects  Y. Anraku, M.D., H. Mizuta,
Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering.
Time to be positive about negative data?
Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage extracellular matrix protein matrilins  M. Pei, M.D., Ph.D., J. Luo, M.D.,
Osteoarthritis and Cartilage
Stem cell therapy for human cartilage defects: a systematic review
Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes  A. Marsano, M.Sc., S.J. Millward-Sadler,
N.D. Miljkovic, M.D., Ph.D., G.M. Cooper, Ph.D., K.G. Marra, Ph.D. 
T. Kurth, M. Sc. , E. Hedbom, Ph. D. , N. Shintani, Ph. D. , M
M. A. Cleary, R. Narcisi, K. Focke, R. van der Linden, P. A. J
Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors.
An experimental study on costal osteochondral graft
Magnesium enhances adherence and cartilage formation of synovial mesenchymal stem cells through integrins  M. Shimaya, T. Muneta, S. Ichinose, K. Tsuji,
Emerging role of endothelin receptor type B in regulating chondrogenic and hypertrophic changes of human mesenchymal stem cells  M. Au, M. Zhu, W.-J.
Safety of intra-articular cell-therapy with culture-expanded stem cells in humans: a systematic literature review  C.M.M. Peeters, M.J.C. Leijs, M. Reijman,
Development of growth factor tethered hyaluronan microspheres for in situ chondrogenic differentiation of human mesenchymal stem cells  S. Ansboro, J.S.
Osteoarthritis and Cartilage
A peptide temporally enhanced chondrogenesis of mesenchymal stem cells
Changes in microstructure and gene expression of articular chondrocytes cultured in a tube under mechanical stress  Shuitsu Maeda, M.D., Jun Nishida,
The association between hip bone marrow lesions and bone mineral density: a cross- sectional and longitudinal population-based study  H. Ahedi, D. Aitken,
Novel juvenile factors for cartilage regeneration
Cellular origin of neocartilage formed at wound edges of articular cartilage in a tissue culture experiment  P.K. Bos, M.D., Ph.D., N. Kops, B.Sc., J.A.N.
Osteoarthritis and Cartilage
L. Xu, I. Polur, C. Lim, J.M. Servais, J. Dobeck, Y. Li, B.R. Olsen 
Optimal ratio of adipose stem cells and bone marrow stem cell to promote osteogenic differentiation and angiogenesis  G.-I. Im, K.-I. Kim, N.-H. Jo  Osteoarthritis.
Parathyroid hormone (1-34) prevents cartilage degradation and preserves subchondral bone micro-architecture in guinea pigs with spontaneous osteoarthritis 
Discovery of a small molecule inhibitor of the Wnt pathway (SM04690) as a potential disease modifying treatment for knee osteoarthritis  J.D. Hood, V.
Osteoarthritis year in review 2016: mechanics
M. Doherty, P. Dieppe  Osteoarthritis and Cartilage 
Effect of expansion medium on ex vivo gene transfer and chondrogenesis in type II collagen–glycosaminoglycan scaffolds in vitro  R.M. Capito, Ph.D., M.
Presentation transcript:

Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon Shin, M.D., Kee-Byung Lee, M.D.  Osteoarthritis and Cartilage  Volume 13, Issue 10, Pages 845-853 (October 2005) DOI: 10.1016/j.joca.2005.05.005 Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 1 Immunofluorescent staining for STRO-1 in BMMSCs (A); ATMSCs (B); peripheral blood monocyte (C), and CD34 in BMMSCs (D); ATMSCs (E); peripheral blood monocyte (F). Osteoarthritis and Cartilage 2005 13, 845-853DOI: (10.1016/j.joca.2005.05.005) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 2 AP staining of BMMSCs after 2 weeks of culture in OM (A); control medium (B), and ATMSCs after 2 weeks of culture in OM (C); control medium (D). Osteoarthritis and Cartilage 2005 13, 845-853DOI: (10.1016/j.joca.2005.05.005) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 3 Von Kossa staining of BMMSCs after 3 weeks of culture in OM medium (A); control medium (B), and ATMSCs after 3 weeks of culture in OM (C); control medium (D). Osteoarthritis and Cartilage 2005 13, 845-853DOI: (10.1016/j.joca.2005.05.005) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 4 The appearance of BMMSCs (A) and ATMSCs (B) in the fibrin culture (5 days after seeding). Osteoarthritis and Cartilage 2005 13, 845-853DOI: (10.1016/j.joca.2005.05.005) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 5 Chondrogenesis in the pellet culture. Hematoxylin eosin staining of BMMSCs cultured in CM (A); in control medium (B), ATMSCs cultured in CM (C); in control medium (D) after 4 weeks of culture. Safranin-O staining of BMMSCs in CM (E); in control medium (F), ATMSCs cultured in CM (G); in control medium (H). Immunohistochemical staining for type II collagen of BMMSCs in CM (J); in control medium (K), ATMSCs cultured in CM (L); in control medium (M). Normal human articular cartilage and subchondral bone were used as the control for Safranin-O staining (I) and type II collagen staining (N). Osteoarthritis and Cartilage 2005 13, 845-853DOI: (10.1016/j.joca.2005.05.005) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 6 Chondrogenesis in the fibrin gel culture. Hematoxylin eosin staining of BMMSCs cultured in CM (A); in control medium (B), ATMSCs cultured in CM (C); in control medium (D) after 4 weeks of culture. Safranin-O staining of BMMSCs in CM (E); in control medium (F), ATMSCs cultured in CM (G); in control medium (H). Immunohistochemical staining for type II collagen of BMMSCs in CM (I); in control medium (J), ATMSCs cultured in CM (K); in control medium (L). Osteoarthritis and Cartilage 2005 13, 845-853DOI: (10.1016/j.joca.2005.05.005) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions