Regeneration of articular cartilage – Evaluation of osteochondral defect repair in the rabbit using multiphasic implants  S.R. Frenkel, Ph.D., G. Bradica,

Slides:



Advertisements
Similar presentations
Chitosan–glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects  C.D.
Advertisements

Volume 29, Issue 6, Pages (June 2013)
Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells  R. Kuroda, M.D.,
Osteoarthritis cartilage histopathology: grading and staging
B. Bai, Y. Li  Osteoarthritis and Cartilage 
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal.
Intra-articular injection of the cyclooxygenase-2 inhibitor parecoxib attenuates osteoarthritis progression in anterior cruciate ligament-transected knee.
Implantation of bone marrow-derived buffy coat can supplement bone marrow stimulation for articular cartilage repair  L.H. Jin, B.H. Choi, Y.J. Kim, S.R.
Granulocyte macrophage – colony stimulating factor (GM-CSF) significantly enhances articular cartilage repair potential by microfracture  M.-D. Truong,
Alleviation of osteoarthritis by calycosin-7-O-β-d-glucopyranoside (CG) isolated from Astragali radix (AR) in rabbit osteoarthritis (OA) model  S.I. Choi,
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells.
Definition of a Critical Size Osteochondral Knee Defect and its Negative Effect on the Surrounding Articular Cartilage in the Rat  H. Katagiri, L.F. Mendes,
Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage  M. Rutgers, M.J.P. van Pelt, W.J.A. Dhert, L.B.
Chitosan–glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects  C.D.
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
Direct bone morphogenetic protein 2 and Indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates  J.T. Sieker, M. Kunz,
Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage.
Parathyroid hormone [1-34] improves articular cartilage surface architecture and integration and subchondral bone reconstitution in osteochondral defects.
NEL-like molecule-1-modified bone marrow mesenchymal stem cells/poly lactic-co- glycolic acid composite improves repair of large osteochondral defects.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
PGE2 signal via EP2 receptors evoked by a selective agonist enhances regeneration of injured articular cartilage  S. Otsuka, M.D., T. Aoyama, M.D., Ph.D.,
The layered structure of the articular surface
Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells  R. Kuroda, M.D.,
Direct bone morphogenetic protein 2 and Indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates  J.T. Sieker, M. Kunz,
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
Destabilization of the medial meniscus leads to subchondral bone defects and site- specific cartilage degeneration in an experimental rat model  H. Iijima,
A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair  A. Changoor, N. Tran-Khanh, S. Méthot,
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat  N. Gerwin, A.M. Bendele, S. Glasson,
A. Ludin, J.J. Sela, A. Schroeder, Y. Samuni, D.W. Nitzan, G. Amir 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
The chondrogenic repair response of undifferentiated mesenchymal cells in rat full- thickness articular cartilage defects  Y. Anraku, M.D., H. Mizuta,
Cyclodextrin polysulphate protects articular cartilage in experimental lapine knee osteoarthritis  S. Groeneboer, M.Sc., P. Pastoureau, M.D., Ph.D., E.
Joint distraction attenuates osteoarthritis by reducing secondary inflammation, cartilage degeneration and subchondral bone aberrant change  Y. Chen,
Pretreatment of periosteum with TGF-β1 in situ enhances the quality of osteochondral tissue regenerated from transplanted periosteal grafts in adult rabbits 
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Validation of a 40MHz B-scan ultrasound biomicroscope for the evaluation of osteoarthritis lesions in an animal model  Mathieu P. Spriet, D.V.M., Christiane.
Osteoarthritis cartilage histopathology: grading and staging
Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle  Y.-S.
Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells.
Utility of T2 mapping and dGEMRIC for evaluation of cartilage repair after allograft chondrocyte implantation in a rabbit model  J. Endo, A. Watanabe,
E.B. Hunziker, M.D., A. Stähli, D.M.D.  Osteoarthritis and Cartilage 
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog  J.L. Cook, K. Kuroki, D. Visco, J.-P.
Loss of Frzb and Sfrp1 differentially affects joint homeostasis in instability-induced osteoarthritis  S. Thysen, F.P. Luyten, R.J. Lories  Osteoarthritis.
An experimental study on costal osteochondral graft
Luis A. Solchaga, Ph. D. , Johnna S. Temenoff, Ph. D. , Jizong Gao, M
Cartilaginous repair of full-thickness articular cartilage defects is induced by the intermittent activation of PTH/PTHrP signaling  S. Kudo, H. Mizuta,
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
K. Kuroki, C.R. Cook, J.L. Cook  Osteoarthritis and Cartilage 
Mevastatin reduces cartilage degradation in rabbit experimental osteoarthritis through inhibition of synovial inflammation  Y. Akasaki, M.D., S. Matsuda,
Histopathological correlation of cartilage swelling detected by magnetic resonance imaging in early experimental osteoarthritis  E. Calvo, M.D., I. Palacios,
Matrix-associated autologous chondrocyte transplantation in a compartmentalized early stage of osteoarthritis  M. Schinhan, M. Gruber, R. Dorotka, M.
Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair  A.C. Kuo, M.D., Ph.D., J.J. Rodrigo, M.D.,
Changes in microstructure and gene expression of articular chondrocytes cultured in a tube under mechanical stress  Shuitsu Maeda, M.D., Jun Nishida,
Definition of a Critical Size Osteochondral Knee Defect and its Negative Effect on the Surrounding Articular Cartilage in the Rat  H. Katagiri, L.F. Mendes,
Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate.
Surgical induction, histological evaluation, and MRI identification of cartilage necrosis in the distal femur in goats to model early lesions of osteochondrosis 
K.L. Caldwell, J. Wang  Osteoarthritis and Cartilage 
Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term.
L. Xu, I. Polur, C. Lim, J.M. Servais, J. Dobeck, Y. Li, B.R. Olsen 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Presentation transcript:

Regeneration of articular cartilage – Evaluation of osteochondral defect repair in the rabbit using multiphasic implants  S.R. Frenkel, Ph.D., G. Bradica, Ph.D., J.H. Brekke, D.D.S., S.M. Goldman, M.S., K. Ieska, M.D., P. Issack, M.D., M.R. Bong, M.D., H. Tian, M.D., J. Gokhale, Ph.D., R.D. Coutts, M.D., R.T. Kronengold, Ph.D.  Osteoarthritis and Cartilage  Volume 13, Issue 9, Pages 798-807 (September 2005) DOI: 10.1016/j.joca.2005.04.018 Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 1 Scanning micrograph of ACF/SBR where the ACF is composed of HY–CT-polyelectrolytic complex, original magnification 50×. In its dry form shown here, the HY–CT-PEC fabric is an open-cell matrix. Osteoarthritis and Cartilage 2005 13, 798-807DOI: (10.1016/j.joca.2005.04.018) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 2 Scanning micrograph of ACF/SBR where the ACF is composed of type I collagen, processed into a 3-D malleable substratum, original magnification 20×. Osteoarthritis and Cartilage 2005 13, 798-807DOI: (10.1016/j.joca.2005.04.018) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 3 Modification of the O'Driscoll histological scoring scale for evaluation of regenerated cartilage and bone. Osteoarthritis and Cartilage 2005 13, 798-807DOI: (10.1016/j.joca.2005.04.018) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 4 Demonstration of bone–cartilage interface functioning as a hydrophobic region to fluids. Left to right panels shows colored fluids being loaded into the ACF and bone compartments of the PEC device; final panel demonstrates that material loaded into one compartment does not cross into the other. Osteoarthritis and Cartilage 2005 13, 798-807DOI: (10.1016/j.joca.2005.04.018) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 5 Repair at 24 weeks postoperatively. Black bars represent border of defect. Safranin-O stain, ×40. (A) Sham. Note fibrillation, clusters, and lack of integration. (B) Collagen ACF. Columnar chondrocyte architecture, good integration, and positive Safranin-O staining are evident. (C) PEC ACF. Some surface fibrillation and loss of stain are present, along with well-integrated regenerated and excellent bone reconstitution. (D) PEC ACF. Note persistent cartilage in subchondral bone region; however, repair is contiguous with host and appears hyaline-like. Osteoarthritis and Cartilage 2005 13, 798-807DOI: (10.1016/j.joca.2005.04.018) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 6 Micrographs of collagen ACF device, ×40. (A). Immunohistochemical stain for type II collagen demonstrating collagen localized to the synovial surface of the regenerated articular cartilage. (B) Safranin-O positive material localized to deeper regions of regenerated articular cartilage. Osteoarthritis and Cartilage 2005 13, 798-807DOI: (10.1016/j.joca.2005.04.018) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 7 Repair specimen from medial femoral condyle, from authors' 6-week study (unpublished). Both articular cartilage and subchondral bone regions are composed of OPLA®, with 3-D architectures customized to resemble the gross histological pattern of each tissue region36. Hyaluronic acid velour served as the microstructure for the subchondral bone region. Note vertical columns of bone formed in ACF in response to the geometry and rigid physical properties of the substratum in that region, ×40. Osteoarthritis and Cartilage 2005 13, 798-807DOI: (10.1016/j.joca.2005.04.018) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 8 Micrograph of PEC ACF device, ×40. Central region is Safranin-O positive. Inset: note the presence of mesenchymal cells immediately subjacent to Safranin-O-positive staining chondrocytes in the repair, suggesting that cells in this area may have migrated into the HY–CT-PEC fabric from the marrow. Osteoarthritis and Cartilage 2005 13, 798-807DOI: (10.1016/j.joca.2005.04.018) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions