VLSI Testing Lecture 3: Fault Modeling

Slides:



Advertisements
Similar presentations
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 31/22alt1 Lecture 31 System Test (Lecture 22alt in the Alternative Sequence) n Definition n Functional.
Advertisements

10/4-6/05ELEC / Lecture 111 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Apr. 20, 2001VLSI Test: Bushnell-Agrawal/Lecture 311 Lecture 31 System Test n Definition n Functional test n Diagnostic test  Fault dictionary  Diagnostic.
Fault Equivalence Number of fault sites in a Boolean gate circuit is = #PI + #gates + # (fanout branches) Fault equivalence: Two faults f1.
1 Dictionary-Less Defect Diagnosis as Surrogate Single Stuck-At Faults Chidambaram Alagappan Vishwani D. Agrawal Department of Electrical and Computer.
CMP238: Projeto e Teste de Sistemas VLSI Marcelo Lubaszewski Aula 2 - Teste PPGC - UFRGS 2005/I.
Copyright 2001, Agrawal & BushnellDay-1 AM-3 Lecture 31 Testing Analog & Digital Products Lecture 3: Fault Modeling n Why model faults? n Some real defects.
Copyright 2001, Agrawal & BushnellDay-1 AM Lecture 11 Design for Testability Theory and Practice January 15 – 17, 2005 Vishwani D. Agrawal James J. Danaher.
Test de Circuitos Integrados
Spring 08, Mar 13 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2008 VLSI Test Principles Vishwani D. Agrawal James.
Lecture 5 Fault Modeling
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 51 Lecture 5 Fault Modeling n Why model faults? n Some real defects in VLSI and PCB n Common fault.
1 Introduction VLSI Testing. 2 Overview First digital products (mid 1940's) Complexity:low MTTF:hours Cost:high Present day products (mid 1980's) Complexity:high.
Spring 08, Mar 27 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2008 Fault Simulation Vishwani D. Agrawal James J.
Dominance Fault Collapsing of Combinational Circuits By Kalpesh Shetye & Kapil Gore ELEC 7250, Spring 2004.
Copyright 2001, Agrawal & BushnellDay-1 AM-1 Lecture 11 Testing Analog & Digital Products Dr. Vishwani D. Agrawal James J. Danaher Professor of Electrical.
ELEN 468 Lecture 231 ELEN 468 Advanced Logic Design Lecture 23 Testing.
5/24/2016 Based on text by S. Mourad "Priciples of Electronic Systems" Digital Testing: Defects, Failures and Faults.
Copyright 2001, Agrawal & BushnellLecture 1 Introduction1 VLSI Testing Lecture 1: Introduction Dr. Vishwani D. Agrawal James J. Danaher Professor of Electrical.
Copyright 2001, Agrawal & BushnellLecture 1 Introduction1 VLSI Testing Dr. Vishwani D. Agrawal James J. Danaher Professor of Electrical and Computer Engineering.
ECE 553: TESTING AND TESTABLE DESIGN OF DIGITAL SYSTES Fault Modeling.
Modern VLSI Design 4e: Chapter 4 Copyright  2008 Wayne Wolf Topics n Switch networks. n Combinational testing.
Unit I Testing and Fault Modelling
1 EE 587 SoC Design & Test Partha Pande School of EECS Washington State University
Fault Models, Fault Simulation and Test Generation Vishwani D. Agrawal Department of ECE, Auburn University Auburn, AL 36849, USA
TOPIC : Different levels of Fault model UNIT 2 : Fault Modeling Module 2.1 Modeling Physical fault to logical fault.
EE434 ASIC & Digital Systems Partha Pande School of EECS Washington State University
Fault modeling is the translation of physical defects into a mathematical construct that can be operated upon algorithmically and.
Jan. 26, 2001VLSI Test: Bushnell-Agrawal/Lecture 51 Lecture 5 Fault Modeling n Why model faults? n Some real defects in VLSI and PCB n Common fault models.
TOPIC : Introduction to Faults UNIT 2: Modeling and Simulation Module 1 : Logical faults due to physical faults.
Copyright 2001, Agrawal & BushnellLecture 6:Fault Simulation1 VLSI Testing Lecture 6: Fault Simulation Dr. Vishwani D. Agrawal James J. Danaher Professor.
TOPIC : Introduction to Faults UNIT 2: Modeling and Simulation Module 1 : Logical faults due to physical faults.
VLSI Testing Class Fault Modeling 李昆忠 Kuen-Jong Lee Dept. of Electrical Engineering National Cheng-Kung University Tainan, Taiwan.
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 51 Lecture 5 Fault Modeling n Why model faults? n Some real defects in VLSI and PCB n Common fault.
Fault Models, Fault Simulation and Test Generation Vishwani D. Agrawal Department of ECE, Auburn University Auburn, AL 36849, USA
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 61 Lecture 6 Logic Simulation n What is simulation? n Design verification n Circuit modeling n True-value.
ELEC 7770 Advanced VLSI Design Spring 2016 Introduction
VLSI Testing Lecture 5: Logic Simulation
VLSI Testing Lecture 14: System Diagnosis
VLSI Testing Lecture 5: Logic Simulation
Vishwani D. Agrawal Department of ECE, Auburn University
VLSI Testing Lecture 6: Fault Simulation
Algorithms and representations Structural vs. functional test
VLSI Testing Lecture 14: Built-In Self-Test
Lecture 7 Fault Simulation
ELEC 5270/6270 Spring 2013 Low-Power Design of Electronic Circuits Pseudo-nMOS, Dynamic CMOS and Domino CMOS Logic Vishwani D. Agrawal James J. Danaher.
VLSI Testing engr. uconn. edu/~tehrani/teaching/test/index
ELEC 7770 Advanced VLSI Design Spring 2014 Introduction
VLSI Testing Lecture 6: Fault Simulation
VLSI Testing Lecture 7: Combinational ATPG
VLSI Testing Lecture 15: System Diagnosis
ELEC Digital Logic Circuits Fall 2014 Logic Testing (Chapter 12)
VLSI Testing Lecture 12: Alternate Test
VLSI Testing Lecture 2: Yield & Quality
VLSI Testing Lecture 10: Memory Test
ELEC 5270/6270 Spring 2015 Low-Power Design of Electronic Circuits Pseudo-nMOS, Dynamic CMOS and Domino CMOS Logic Vishwani D. Agrawal James J. Danaher.
Lecture 5 Fault Modeling
Testing for Faults, Looking for Defects
VLSI Testing Lecture 8: Sequential ATPG
Fault Models, Fault Simulation and Test Generation
VLSI Testing Lecture 7: Combinational ATPG
Topics Switch networks. Combinational testing..
VLSI Testing Lecture 9: Delay Test
ELEC 7250 – VLSI Testing (Spring 2006)
VLSI Testing Lecture 4: Testability Analysis
ELEC Digital Logic Circuits Fall 2015 Logic Testing (Chapter 12)
Manufacturing Testing
VLSI Testing Lecture 13: DFT and Scan
Agenda Lecture Content: Combinatorial Circuits Boolean Algebras
ELEC 5270/6270 Spring 2009 Low-Power Design of Electronic Circuits Pseudo-nMOS, Dynamic CMOS and Domino CMOS Logic Vishwani D. Agrawal James J. Danaher.
Presentation transcript:

VLSI Testing Lecture 3: Fault Modeling Dr. Vishwani D. Agrawal James J. Danaher Professor of Electrical and Computer Engineering Auburn University, Alabama 36849, USA vagrawal@eng.auburn.edu http://www.eng.auburn.edu/~vagrawal IIT Delhi, Aug 19, 2013, 2:30-3:30PM Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Lecture 3: Fault Modeling Contents Why model faults? Some real defects in VLSI and PCB Common fault models Stuck-at faults Single stuck-at faults Fault equivalence Fault dominance and checkpoint theorem Classes of stuck-at faults and multiple faults Transistor faults Summary Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Lecture 3: Fault Modeling Why Model Faults? I/O function tests inadequate for manufacturing (functionality versus component and interconnect testing) Real defects (often mechanical) too numerous and often not analyzable A fault model identifies targets for testing A fault model makes analysis possible Effectiveness measurable by experiments Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Some Real Defects in Chips Processing defects Missing contact windows Parasitic transistors Oxide breakdown . . . Material defects Bulk defects (cracks, crystal imperfections) Surface impurities (ion migration) Time-dependent failures Dielectric breakdown Electromigration Packaging failures Contact degradation Seal leaks Ref.: M. J. Howes and D. V. Morgan, Reliability and Degradation - Semiconductor Devices and Circuits, Wiley, 1981. Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Occurrence frequency (%) Observed PCB Defects Defect classes Shorts Opens Missing components Wrong components Reversed components Bent leads Analog specifications Digital logic Performance (timing) Occurrence frequency (%) 51 1 6 13 8 5 Ref.: J. Bateson, In-Circuit Testing, Van Nostrand Reinhold, 1985. Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Lecture 3: Fault Modeling Common Fault Models Single stuck-at faults Transistor open and short faults Memory faults PLA faults (stuck-at, cross-point, bridging) Functional faults (processors) Delay faults (transition, path) Analog faults For more details of fault models, see M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits, Springer, 2000. Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Lecture 3: Fault Modeling Single Stuck-at Fault Three properties define a single stuck-at fault Only one line is faulty The faulty line is permanently set to 0 or 1 The fault can be at an input or output of a gate Example: XOR circuit has 12 fault sites ( ) and 24 single stuck-at faults Faulty circuit value Good circuit value c j 0(1) s-a-0 a d 1(0) g 1 h z i 1 b e 1 k f Test vector for h s-a-0 fault Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Lecture 3: Fault Modeling Fault Equivalence Number of fault sites in a Boolean gate circuit is = #PI + #gates + # (fanout branches) Fault equivalence: Two faults f1 and f2 are equivalent if all tests that detect f1 also detect f2. If faults f1 and f2 are equivalent then the corresponding faulty functions are identical. Fault collapsing: All single faults of a logic circuit can be divided into disjoint equivalence subsets, where all faults in a subset are mutually equivalent. A collapsed fault set contains one fault from each equivalence subset. Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Structural Equivalence sa0 sa0 sa0 sa1 sa0 sa1 sa1 sa1 WIRE AND OR sa0 sa1 NOT sa1 sa0 sa0 sa1 sa0 sa1 sa0 sa1 sa0 NAND NOR sa1 sa0 sa0 sa1 sa1 sa0 sa1 FANOUT Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Lecture 3: Fault Modeling Equivalence Example sa0 sa1 Faults in red removed by equivalence collapsing sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 20 Collapse ratio = ─── = 0.625 32 Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Lecture 3: Fault Modeling Fault Dominance If all tests of some fault F1 detect another fault F2, then F2 is said to dominate F1. Dominance fault collapsing: If fault F2 dominates F1, then F2 is removed from the fault list. When dominance fault collapsing is used, it is sufficient to consider only the input faults of Boolean gates. See the next example. In a tree circuit (without fanouts) PI faults form a dominance collapsed fault set. If two faults dominate each other then they are equivalent. Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Lecture 3: Fault Modeling Dominance Example All tests of F2 F1 s-a-1 001 110 010 000 101 100 s-a-1 F2 011 Only test of F1 s-a-1 s-a-1 s-a-1 s-a-0 A dominance collapsed fault set Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Lecture 3: Fault Modeling Dominance Example sa0 sa1 Faults in red removed by equivalence collapsing sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 Faults in yellow removed by dominance collapsing sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 sa0 sa1 15 Collapse ratio = ─── = 0.47 32 Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Classes of Stuck-at Faults Following classes of single stuck-at faults are identified by fault simulators: Potentially-detectable fault – Test produces an unknown (X) state at primary output (PO); detection is probabilistic, usually with 50% probability. Initialization fault – Fault prevents initialization of the faulty circuit; can be detected as a potentially-detectable fault. Hyperactive fault – Fault induces much internal signal activity without reaching PO. Redundant fault – No test exists for the fault. Untestable fault – Test generator is unable to find a test. Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Multiple Stuck-at Faults A multiple stuck-at fault means that any set of lines is stuck-at some combination of (0,1) values. The total number of single and multiple stuck-at faults in a circuit with k single fault sites is 3k – 1. A single fault test can fail to detect the target fault if another fault is also present, however, such masking of one fault by another is rare. Statistically, single fault tests cover a very large number of multiple faults. Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Transistor (Switch) Faults MOS transistor is considered an ideal switch and two types of faults are modeled: Stuck-open – a single transistor is permanently stuck in the open state. Stuck-short – a single transistor is permanently shorted irrespective of its gate voltage. Detection of a stuck-open fault requires two vectors. Detection of a stuck-short fault requires the measurement of quiescent current (IDDQ). Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Lecture 3: Fault Modeling Stuck-Open Example Vector 1: test for A s-a-0 (Initialization vector) Vector 2 (test for A s-a-1) pMOS FETs VDD Two-vector s-op test can be constructed by ordering two s-at tests A 1 Stuck- open B C 1(Z) Good circuit states nMOS FETs Faulty circuit states Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Lecture 3: Fault Modeling Stuck-Short Example Test vector for A s-a-0 pMOS FETs VDD IDDQ path in faulty circuit A 1 Stuck- short B Good circuit state C 0 (X) nMOS FETs Faulty circuit state Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Lecture 3: Fault Modeling Summary Fault models are analyzable approximations of defects and are essential for a test methodology. For digital logic single stuck-at fault model offers best advantage of tools and experience. Many other faults (bridging, stuck-open and multiple stuck-at) are largely covered by stuck-at fault tests. Stuck-short and delay faults and technology-dependent faults require special tests. Memory and analog circuits need other specialized fault models and tests. Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Lecture 3: Fault Modeling Problems to Solve What are three most common types of blocks a modern SOC is likely to have? Circle three: analog circuit, digital logic, fluidics, memory, MEMS, optics, RF. The cost of a chip is US$1.00 when its yield is 50%. What will be its cost if you increased the yield to 80%. What is the total number of single stuck-at faults, counting both stuck-at-0 and stuck-at-1, in the following circuit? Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Lecture 3: Fault Modeling Solution What are three most common types of blocks a modern SOC is likely to have? Circle three: analog circuit, digital logic, fluidics, memory, MEMS, optics, RF. The cost of a chip is US$1.00 when its yield is 50%. What will be its cost if you increased the yield to 80%. Assume a wafer has n chips, then wafer cost Chip cost = ————— = $1.00 0.5 × n Wafer cost = 0.5n × $1.00 = 50n cents For yield = 0.8, chip cost = wafer cost/(0.8n) = 50n/(0.8n) = 62.5 cents Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling

Lecture 3: Fault Modeling Solution Cont. What is the total number of single stuck-at faults, counting both stuck-at-0 and stuck-at-1, in the following circuit? Counting two faults on each line, Total number of faults = 2 × (#PI + #gates + #fanout branches) = 2 × (2 + 2 + 2) = 12 s-a-0 s-a-1 s-a-0 s-a-1 s-a-0 s-a-1 s-a-0 s-a-1 s-a-0 s-a-1 s-a-0 s-a-1 Copyright 2001, Agrawal & Bushnell Lecture 3: Fault Modeling