Design of Compression and Acceleration Systems Technical Challenges

Slides:



Advertisements
Similar presentations
Paul Emma SLAC January 14, 2002 BERLIN CSR Benchmark Test-Case Results CSR Workshop.
Advertisements

1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
1 ILC Bunch compressor Damping ring ILC Summer School August Eun-San Kim KNU.
P. Emma FAC Meeting 7 Apr Low-Charge LCLS Operating Point Including FEL Simulations P. Emma 1, W. Fawley 2, Z. Huang 1, C.
Juhao Wu Feedback & Oct. 12 – 13, 2004 Juhao Wu Stanford Linear Accelerator Center LCLS Longitudinal Feedback with CSR as Diagnostic.
P. Emma, SLACLCLS Commissioning – Sep. 22, 2004 Linac Commissioning P. Emma LCLS Commissioning Workshop, SLAC Sep , 2004 LCLS.
P. Emma, SLACLCLS FAC Meeting - April 29, 2004 Linac Physics, Diagnostics, and Commissioning Strategy P. Emma LCLS FAC Meeting April 29, 2004 LCLS.
Feedback and CSR Miniworkshop on XFEL Short Bunch, SLAC, July 26 – 30, 2004 Juhao Wu, SLAC 1 Juhao Wu Stanford Linear Accelerator.
Accelerator Issues and Design Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator.
Feedback and CSR Miniworkshop on XFEL Short Bunch, SLAC, July 26 – 30, 2004 Juhao Wu, SLAC 1 Juhao Wu Stanford Linear Accelerator.
E. Bong, SLACLCLS FAC Meeting - April 29, 2004 Linac Overview E. Bong LCLS FAC Meeting April 29, 2004 LCLS.
RF Systems and Stability Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center.
S2E in LCLS Linac M. Borland, Lyncean Technologies, P. Emma, C. Limborg, SLAC.
SPPS, Beam stability and pulse-to-pulse jitter Patrick Krejcik For the SPPS collaboration Zeuthen Workshop on Start-to-End Simulations of X-ray FEL’s August.
LCLS Accelerator SLAC linac tunnel research yard Linac-0 L =6 m Linac-1 L  9 m  rf   25° Linac-2 L  330 m  rf   41° Linac-3 L  550 m  rf  0°
Paul Emma Stanford Linear Accelerator Center July 2, 2002 Paul Emma Stanford Linear Accelerator Center July 2, 2002 High Brightness Electron Beam Magnetic.
Simulation of Microbunching Instability in LCLS with Laser-Heater Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory.
Max Cornacchia, Paul Emma Stanford Linear Accelerator Center Max Cornacchia, Paul Emma Stanford Linear Accelerator Center  Proposed by M. Cornacchia (Nov.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
J. Wu J. Wu working with T.O. Raubenheimer, J. Qiang (LBL), LCLS-II Accelerator Physics meeting April 11, 2012 Study on the BC1 Energy Set Point LCLS-II.
Change in Program Tuesday Morning Review of 2002 CSR Workshop (T. Limberg, 20 min) CSR calculation Models (M. Dohlus, 40 min) The 3D Codes TraFiC4 and.
P. Krejcik LINAC 2004 – Lübeck, August 16-20, 2004 LCLS - Accelerator System Overview Patrick Krejcik on behalf of the LCLS.
‘S2E’ Study of Linac for TESLA XFEL P. Emma SLAC  Tracking  Comparison to LCLS  Re-optimization  Tolerances  Jitter  CSR Effects.
PAC-2001, Chicago, IL Paul Emma SLAC SLAC Issues and R&D Critical to the LCLS UCLA LLNL.
J. Wu J. Wu working with T.O. Raubenheimer LCLS-II Accelerator Physics meeting May 09, 2012 Study on the BC1 Energy Set Point LCLS-II Accel. Phys., J.
X-band Based FEL proposal
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
SABER Longitudinal Tracking Studies P. Emma, K. Bane Mar. 1, 2006
LSC/CSR Instability Introduction (origin of the instability) CSR/LSC
A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Sara Thorin, MAX IV Laboratory
Accelerator Physics Challenges of X-Ray FEL SASE Sources
Short pulse, low charge LCLS operation
X-band FEL beam dynamics issues
MULTI-TeV BUNCH COMPRESSOR STUDIES
CSR Microbunching in the Zeuthen-Workshop Benchmark Chicane
Review of Application to SASE-FELs
CSR Benchmark Test-Case Results
Progress activities in short bunch compressors
LCLS Linac Update Brief Overview L1 & BC1 Progress LTU & E-Dump Status Continuing Resolution Impact.
Time-Resolved Images of Coherent Synchrotron Radiation Effects
Chromatic Corrections in LCLS-II P. Emma, Y. Nosochkov, M. Woodley Mar
LCLS Longitudinal Feedback and Stability Requirements
Issues and Challenges for Short Pulse Radiation Production
Simulation Calculations
Z. Huang LCLS Lehman Review May 14, 2009
Final Focus optics for Possible New B-Line
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
Linac/BC1 Commissioning P
LCLS Linac Overview E. Bong Lehman Review August 10, 2004
Linac (WBS 1.2.2) Vinod Bharadwaj April 23, 2002
LCLS Commissioning P. Emma, et al
LCLS Tracking Studies CSR micro-bunching in compressors
Modified Beam Parameter Range
Linac Diagnostics Patrick Krejcik, SLAC April 24, 2002
Gain Computation Sven Reiche, UCLA April 24, 2002
Linac Physics, Diagnostics, and Commissioning Strategy P
Breakout Sessions SC1/SC2 – Accelerator Physics
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Breakout Session SC5 – Control Systems
LCLS Injector Commissioning P
Introduction to Free Electron Lasers Zhirong Huang
Linac Design Update P. Emma LCLS DOE Review May 11, 2005 LCLS.
LCLS Longitudinal Feedback System and Bunch Length Monitor Juhao Wu Stanford Linear Accelerator Center LCLS DOE Review, February 08, 2006 LCLS longitudinal.
Enhanced Self-Amplified Spontaneous Emission
Electron Optics & Bunch Compression
Physics Update P. Emma FAC Meeting October 27, 2005 LCLS.
Presentation transcript:

Accelerator Physics Considerations for the LCLS Linac Paul Emma, SLAC April 23, 2002 Design of Compression and Acceleration Systems Technical Challenges Full System Simulations LCLS LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

use 2 compressors, 3 linacs Nominal System Design 1.5-Å SASE FEL Linac: Requirements Acceleration to 14.3 GeV (4.5 GeV min.) Bunch compression to 3.4 kA (for gex,y  1.2 mm) Emittance preservation (<20% ‘slice’, <100% ‘projected’) Final energy spread (<0.02% ‘slice’, <0.1% ‘projected’) Minimal sensitivity to system ‘jitter’ Diagnostics integrated into optics Flexible operations (15 Å, low-charge, chirp, etc.) use 2 compressors, 3 linacs LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

Nominal System Design Constraints 1 km Use existing SLAC linac compatible with PEP-II operation Use existing ‘FFTB’ hall for undulator 1 km LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

2 Design Optimization Fast, computer model used to optimize design Set final e- parameters (E, sE/E, Ipk, etc.), minimize sensitivity (e.g., gun-timing  Ipk), find best RF phases, chicane strengths and locations, with reasonable constraints (RF power., optics, etc.) |R56|i < lim. |fRF|i < lim. N sz0 E0 2 R56 (BC1, BC2) fRF (L1, L2, L3) Ei (BC1, BC2) |dI/dt| < lim. |dE/dQ| < lim. explore alternate parameter sets (15 Å, low-charge, chirp, etc.) LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

Nominal LCLS Linac Parameters for 1.5-Å FEL Single bunch, 1-nC charge, 1.2-mm slice emittance, 120-Hz repetition rate… SLAC linac tunnel FFTB hall Linac-0 L =6 m Linac-1 L =9 m rf = -38° Linac-2 L =330 m rf = -43° Linac-3 L =550 m rf = -10° BC-1 R56= -36 mm BC-2 L =22 m R56= -22 mm DL-2 L =66 m R56 = 0 DL-1 L =12 m R56 0 undulator L =120 m 7 MeV z  0.83 mm   0.2 % 150 MeV   0.10 % 250 MeV z  0.19 mm   1.8 % 4.54 GeV z  0.022 mm   0.76 % 14.35 GeV   0.02 % ...existing linac new rf gun 25-1a 30-8c 21-1b 21-1d X Linac-X L =0.6 m rf=180 21-3b 24-6d (RF phase: frf = 0 at accelerating crest) LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

after BC1 after X-RF after L1 after DL1 after BC2 after L3 at und. energy profile phase space time profile sz = 830 mm sz = 190 mm sz = 830 mm sz = 23 mm sz = 830 mm sz = 23 mm FINAL sz = 190 mm sz = 23 mm LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

Machine Flexibility Operation at 0.2 to 1.0 nC and constant 87-m saturation length at 1.5 Å in/output beam linac setup jitter LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

LCLS Technical Challenges Coherent Synchrotron Radiation in Bends projected emittance growth micro-bunching instability Emittance Preservation in Linacs transverse wakefields misalignments & chromaticity Machine Stability jitter tolerance budget simulation of budget LCLS LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

Magnetic Bunch Compression DE/E z 2sz0 DE/E z DE/E 2sz Under-compression Over-compression V = V0sin(wt) RF Accelerating Voltage Dz = R56DE/E Path Length-Energy Dependent Beamline LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

Coherent Synchrotron Radiation (CSR) Powerful radiation generates energy spread in bends Induced energy spread breaks achromatic system Causes bend-plane emittance growth (short bunch is worse) coherent radiation for l > sz bend-plane emittance growth sz l L0 s DE/E = 0 Dx e– R  DE/E < 0 overtaking length: L0  (24szR2)1/3 Dx = R16(s)DE/E LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

CSR Micro-bunching* S. Heifets, S. Krinsky, G. Stupakov, SLAC-PUB-9165, March 2002 CSR can amplify small modulations on bunch current  Successive bend-systems cause micro-bunching  Growth of slice-emittance. without SC-wiggler sd  310-6 avoid! 230 fsec R. Carr Super-conducting wiggler prior to BC2 increases uncorrelated E-spread (310-6  310-5) SC-wiggler damps bunching sd  310-5 * First observed by M. Borland (ANL) in LCLS Elegant tracking LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

CSR in BC2 Chicane (animation through chicane) DE/E0 f(s) gex LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

CSR Micro-bunching and Projected Emittance Growth 14.3 GeV at undulator entrance x versus z without SC-wiggler 230 fsec projected emittance growth is simply ‘steering’ of bunch head and tail ‘slice’ emittance is not altered 0.5 mm x versus z with SC-wiggler Workshop in Berlin, Jan. 2002 to benchmark results (www.DESY.de/csr/) – follow-up meeting in summer LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

X-band RF used to Linearize Compression (f = 11.424 GHz) S-band RF curvature and 2nd-order momentum compaction cause sharp peak current spike X-band RF at decelerating phase corrects 2nd-order and allows unchanged z-distribution 1  -40° x = p Slope linearized lx = ls/4 avoid! 0.6-m section, 22 MV available at SLAC (200-mm alignment) LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

Transverse Wakefields and Component Misalignments transverse wake effect on projected emittance corrected trajectory y correctable emittance growth x y 300 mm rf-structure 150 mm quad/BPM experience at SLC… gey  2 mm @ 1 nC beam-based align correction bumps… x L2 phase adv/cell optimized sz = 195 mm wakes off wakes on L3 phase adv/cell optimized sz = 22 mm wakes on off also misaligned quads/BPMs generate dispersion  De LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

Correction of Wakefield Emittance Growth Measure emittance at end of linac Launch b-oscillations of various amplitudes & phases Empirically minimize gex,y Well tested at SLC* LCLS L2 sim. with Liar SLC gey = 2-3 mm @ 1 nC with 3-km linac and 1-mm bunch length * J.T. Seeman et al., 15th International Conf. on High Energy Accelerators, Hamburg, Germany, July 1992. LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

Emittance and Energy Spread Diagnostics* 4 energy spread meas. stations (optimized for small bx) 5 emittance meas. stations designed into optics (Dyx,y) slice measurements possible with transverse RF (L0 & L3) 3 prof. mon.’s (Dyx,y = 60°) ...existing linac L0 rf gun L3 L1 X L2 gex,y sE * see also D. Dowell and P. Krejcik talks LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

Transverse RF deflector as diagnostic* sz V(t) S-band sx RF ‘streak’ V0 = 0 230 fsec LCLS simulation long. phase space * see P. Krejcik talk Built & used at SLAC in 1960’s meas. bunch length & slice emittance V0 = 20 MV meas. longitudinal phase space y = kt [mm] x = hDE/E [mm] LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

Machine Stability Final peak current & energy jitter caused by variations of… bunch charge gun-laser timing RF phases RF voltage chicane supplies Need feedback for time scales >1 min. Design is optimized, but… system jitter tol.- budget is needed LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

Jitter Budget (<1 minute time-scale) measured RF performance klystron phase rms  0.07° (20 sec) klystron ampl. rms  0.06% (60 sec) LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

Start-to-End Tracking Simulations Track entire machine to evaluate beam brightness & FEL Track machine many times with jitter to test stability budget (M. Borland, ANL) Parmela Elegant Genesis space-charge compression, wakes, CSR, … SASE FEL with wakes LCLS LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

Initial Beam from Parmela Tracking (C. Limborg) 1 nC 10-psec FWHM 0.7-ps rise/fall 120 MV/m gun getherm  0.3 mm 150 MeV gex,y < 1 mm gex gey 2105 to 2106 macro-particles z, DE/E x, y LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

Sliced e- Beam to Evaluate FEL (Dz  0.7 mm) After full system tracking (also see talk by S. Reiche) gex gey mismatch amplitude variation zx slice 4D centroid osc. amplitude zy Lg < 4 m LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

Machine Stability Simulations Track LCLS 230 times with Parmela Elegant Genesis Include wakes, CSR, etc. + jitter budget (M. Borland, ANL) Lg Ipk gex Pout LCLS DOE Review, April 23, 2002 Paul Emma, SLAC

LCLS Summary Linac design well optimized for nominal 1.5-Å operation Design is flexible to accommodate 15-Å, low-charge, & chirp CSR growth of projected emittance – not slice Much experience on SLAC linac with wakefield control Beam diagnostics built into design Full system tracking to… Evaluate e- brightness preservation, Calculate SASE gain, Simulate pulse-to-pulse stability. LCLS Full tracking confirms saturation at 1.5 Å LCLS DOE Review, April 23, 2002 Paul Emma, SLAC