The Power of Physics Estimation… …in sorting out future options Tom Murphy UCSD Physics.

Slides:



Advertisements
Similar presentations
1.Why is the moist adiabatic lapse rate lower than the dry- adiabatic lapse rate? Heat is released during condensation. 2.When temperatures are below freezing,
Advertisements

Answers to Unit 4 Review: Gases
Metric System Basic Units
Chapter 5 Work, Energy and Power
EVs the Energy Infrastructure and the needed User Infrastructure David Farr Project Manager.
Electric cars: part of the problem or a solution for future grids? Frans Nieuwenhout, Energy research Centre of the Netherlands ECN Sustainable.
© Mark E. Damon - All Rights Reserved Welcome Juniors Please take a seat in the front and make sure you have a clicker!
World energy economy at a glance Uri Barenholz Weizmann institute of science December, 2011.
Energy.
Work, distance and force
PHYSICS 231 INTRODUCTORY PHYSICS I
Momentum, impulse, and collisions
BREAKOUT SESSION 2 Smart Grid 2-B: Grid Integration – Essential Step for Optimization of Resources Integrating Intermittent Wind Generation into an Island.
Chapter 2: Sections 4 and 5 Lecture 03: 1st Law of Thermodynamics
College Algebra & Trigonometry
Exponential Growth or Decay Function
An Introduction ppt - Saurabh Mehta
1 Meeting carbon budgets – 5th Progress Report to Parliament Committee on Climate Change, June If you want to tweet about this report.
Cost-Volume-Profit Relationships
Chapter 23 Fossil Fuels 23.1 Fossil fuels as a major energy source
Ethics and Engineering Confronting the Energy Challenge Yvonne Raley.
Capacity Planning For Products and Services
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. Chapter Eleven Cost Behavior, Operating Leverage, and CVP Analysis.
Applications Problem Solving. 6/25/2013 Applications 2 Four-step Method 1. Define variables Name the quantities to be found Write these down Example:
1 ENERGY Gr. 5 Science: Conservation of Energy & Resources BY Full Name Science Unit PowerPoint Outline by Miss Berndl 2009.
PS-5 Test Review. Questions 1 & 2 Distance – 60m/ magnitude only Displacement 10 m east/ magnitude and direction.
MOTION. 01. When an object’s distance from another object is changing, it is in ___.
Heat & Thermodynamics Test Prep Game.
html.
1 NWS-COMET Hydrometeorology Course 15 – 30 June 1999 Meteorology Primer.
Chapter 11 Using Energy.
Simple Linear Regression Analysis
Multiple Regression and Model Building
Sources of Energy Eric Angat Teacher. How do we help lessen our ecological footprint? Essential Questions.
Engine Geometry BC L TC l VC s a q B
LESSON 6 Stoichiometry Practice Related to Climate Change.
Hawaii: 2020 Presented by Alex Waegel for Team Cake B.
Can Energy Production Scale? Choices and Challenges for the Current Century Our Waveform of Consumption.
Sustainable Energy How to wean ourselves off fossil fuels and maintain quality of life Reading: Ch. 1, 2 in Sustainable Energy – Without the Hot Air, by.
Presentation By : Mostafa Ahmed Hathout
Energy is the ability to do work (apply a force over a distance).
They’re GRRRRRRREAT! Tiffany Greider Jeff Woods Alaina Pomeroy Shannon Payton Robert Jones Katherine Costello.
Resource and Energy.
Can Energy Production Scale? Choices and Challenges for the Current Century.
Carbon Storage Mitigating Climate Change? Will this work? Is it too late?
Power of the Sun. Conditions at the Sun’s core are extreme –temperature is 15.6 million Kelvin –pressure is 250 billion atmospheres The Sun’s energy out.
Renewable and Non-renewable Energy Sources
Where will our energy come from ?. Coal: 10,000 tons of coal per day (1 freight train) Nuclear: 100 tons of uranium per year Hydroelectric: 60,000 tons.
The Energy Construct Ben Cipiti May 1, 2008 Mid-Town Brews.
Greenhouse Effect & Global Warming. Some Evidence The global air temperature at the Earth's surface has increased about 0.5 o C during the past century.
Bellringer. Alternative Energy -To achieve a future where energy use is sustainable, we must make the most of the energy sources we already have and develop.
Environmental Physics Chapter 3: Energy Conservation Copyright © 2012 by DBS.
Fossil Fuels II. Synfuels Gas or liquid fuels from hydrocarbons locked in rock. Oil Shale Oil Shale Tar Sands Methane Hydrate.
Ch. 18 Renewable resources!!
Renewable Energy Sources
Energy – Where does it come from? ES 302. Objectives What is energy? What forms does it come in & how do we use it? Understand that ALL sources of energy.
RENEWABLE ENERGY FOCUSING ON SOLAR ENERGY. NON-RENEWABLE ENERGY.
Alternative Energy Sources Wiki Project Kevin Boyle, Mark Fraser.
Different Forms of Energy Chapter 3: Section 1. What is Energy? Energy is the ability to do work (using force to move an object) or effect change Measured.
Large Scale Sources of Electrical Energy
Chapter Seven: Energy  7.1 Energy and Systems  7.2 Conservation of Energy  7.3 Energy Transformations.
PHYSICS – Energy Resources. LEARNING OBJECTIVES Energy resources Core Describe how electricity or other useful forms of energy may be obtained from:
Chapter 13 Notes: Energy Mr. Grivensky. Energy Energy is the ability to do Work or cause change Energy is measured in Joules (J) Work is done when a force.
Types of Power. Performance Objectives: Performance Objectives: 1. List the types of power generated from renewable resources. 2. List the types of power.
ENERGY. Energy Energy is the ability to do work.
Chapter 7 Energy and Power for Technology Unit 2 Energy and Power Technologies.
NONRENEWABLE vs RENEWABLE Renewable energy that comes from resources which are naturally replenished on a human timescale such as sunlight, wind, rain,
ALTERNATIVE ENERGY RESOURCES. ALTERNATIVE ENERGY SOURCES 1.Solar 2.Wind 3.Wave 4.Hydroelectric 5.Nuclear 6.Biofuels 7.Tidal 8.Geothermal.
Forces and Energy We have studied FORCES and Newton’s laws.
Energy Conservation Home, School, and Transportation
Presentation transcript:

The Power of Physics Estimation… …in sorting out future options Tom Murphy UCSD Physics

Inspired By… Famous physicists like Fermi and Feynman frequently formulated fantastic feats of estimation – optional: estimation finagling figures Best course I ever took: Order of Magnitude Physics at Caltech – team-taught by Peter Goldreich and Sterl Phinney Estimation and Scaling in Physics (UCSD Phys 239) – team-taught by Fuller, Diamond, Murphy spring 2010, 2012, Tom Murphy/UCSD

Our Trajectory Today Fermi Problems Climate Change Limits to Growth Fossil Fuel Replacements? Energy Storage Fuel Economy of Cars and EV Math 3Tom Murphy/UCSD

Color Coding to Clarify Black: generic/default Orange-brown italics: emphasis Red: assumptions Blue: constants/knowledge Purple: results A note on numbers: – math is a lot easier if you dont take numbers so seriously – π = 3 = sqrt(10) = 10/3 – 2 3, but 8 9 – c, e, h, k B, m p, m e, σ, G, N A, μ 0, ε 0, R E, M E, r AU, etc. by memory 4Tom Murphy/UCSD

Fermi Problems How many piano tuners in Chicago? How many molecules from Julius Caesars last breath do you draw in with each breath? How far does a car travel before a one-molecule layer is worn from the tire? How many laser pointers would it take to visibly illuminate the Moon? How heavy is a typical cloud? Book: Guesstimation (by Weinstein and Adam) – plus second volume by Weinstein 5Tom Murphy/UCSD

Example Fermi Problem How many kids are laughing so hard right now that milk (or cultural equivalent) is streaming out of their noses? 7 billion people in the world Life expectancy: 60 years Vulnerable age: 4 to 10 10% of life 700 million at risk Half of adults have had this experience 350 M at risk Once-in-lifetime event, 5 sec duration 5/(6×π×10 7 ) 350 M × 0.3× Tom Murphy/UCSD

Our Trajectory Today Fermi Problems Climate Change Limits to Growth Fossil Fuel Replacements? Energy Storage Fuel Economy of Cars and EV Math 7Tom Murphy/UCSD

8 The Rise of CO 2 Charles Keeling (SIO/UCSD), started measuring atmospheric CO 2 from Mauna Loa in Hawaii in Besides the annual photosynthetic cycle, a profound trend is seen. 400 ppm = 400 parts-per-million = 0.04% by volume 2 ppm/yr reference Tom Murphy/UCSD

9 Is this Rise Surprising? Every gram of fossil fuel used produces 3 grams of CO 2 – its straight chemistry: to get the energy out via combustion, the carbon from the hydrocarbon gets attached to oxygen and off it goes How much should we expect? – global energy budget is J/yr from fossil fuels ( J/yr total) – average 10 kcal/gram ~40,000 J/gram g/yr F.F. – so g/yr CO kg/yr CO 2 – atmosphere has mass = kg CO 2 adds 6 ppm/yr by mass – about 4 ppm/yr by volume (CO 2 is 44 g/mol vs. 29 for air) – 50/50 to ocean/atmosphere, atmospheric rise is 2 ppm/yr, by volume – this is darned close to what we see on the Keeling curve graph Tom Murphy/UCSD

10 Total CO 2 Rise We can do the same thing for the entire fossil fuel history – have gone through 1.2 trillion barrels of oil 170 Gtoe Gtoe is gigaton (10 9 ton) oil equivalent (by energy) – used about 180 Gtoe coal worldwide using 45 Gtoe U.S. times four, since U.S. uses ~25% of world energy – used 1100 tcf natural gas in U.S. 30 Gtoe, so guess 120 Gtoe worldwide – 470 Gtoe of fossil fuels kg of CO 2 (3 FF mass) – 280 ppm of atmosphere by mass; 180 ppm by volume – half into atmosphere 90 ppm increase – see 115 ppm increase (280 ppm pre-industrial to 395 ppm today) So the CO 2 increase is absolutely expected! Tom Murphy/UCSD

11 Expected Temperature Rise Applying σT 4 in radiative equilibrium, Earth is 255 K – but actual number is 288 K, thanks to 33 K greenhouse effect If you add to the blanket, expect to get warmer How much warmer? – we know that 7 C of the 33°C greenhouse effect is from CO 2 – have gone from 280 to 385 ppm (11/8 times as much, or 3/8 increase) – dumb proportionality translates into 7 3/8 = 21/8 = 2.6 C change but takes some time because oceans are slow to respond, having enormous heat capacity actual logarithmic nature approximately linear for small changes Should be NO SURPRISE that burning loads of fossil fuels makes us warmer – not actually hard to understand! Tom Murphy/UCSD

Our Trajectory Today Fermi Problems Climate Change Limits to Growth Fossil Fuel Replacements? Energy Storage Fuel Economy of Cars and EV Math 12Tom Murphy/UCSD

Exponential Estimations Sum of all forms of energy used in the U.S. (fossil fuels, nuclear, hydro, wood, etc.) Red curve is exponential at 2.9% per year growth rate World is at 16 TW now; pick 2.3% rate, mapping to 10× per 100 yrs. logarithmic plot of the same Tom Murphy/UCSD

power output of sun 1340 years power output of the entire Milky Way galaxy ~2500 years 405 yr solar power reaching Earths upper atmosphere 320 yr solar power reaching Earths land Extrapolating at 10× per Century all solar land 16 TW today (1.6×10 13 ) 14Tom Murphy/UCSD

Waste Heat Boils Planet (not Global Warming) body temperature water boils paper burns steel melts sun surface temperature global warming? thermodynamic consequence of arbitrary energy technology on Earth Straightforward application of σT 4 radiative disposal of heat: only ticket off planet 15Tom Murphy/UCSD

Physics Predicts an End to Economic Growth Physical growth (energy, population, etc.) on finite Earth is clearly limited Physical resources will always be an important component of economic activity (never below 10%, for instance?) Cap in physical growth means cap in economic growth – Growth is a transitory phase, so major adjustments ahead Fossil Fuel trajectory is set: growth during ascent; what next?? 16 we are here Tom Murphy/UCSD

Our Trajectory Today Fermi Problems Climate Change Limits to Growth Fossil Fuel Replacements? Energy Storage Fuel Economy of Cars and EV Math 17Tom Murphy/UCSD

Estimating Post-Fossil-Fuel Resources Usually not that hard to put numbers/limits on resources – precision is not the goal: sort out major and minor players Some cute ideas quickly dispensed with numbers – lots of distractions out there Example: Wave Power – 1 meter high, 2 m thick, 1000 kg/m kg per meter along wave – raised average of 0.5 m mgh = (2000×10×0.5) = 10,000 J per meter double to capture kinetic energy contribution 20,000 J – wave every 10 seconds 2,000 W for each meter of coastline – coastlines ring world twice (two major sets of continents) so about 100,000 km of (projected) coastline – 10 8 m of coastline times 2×10 3 W per meter 2×10 11 W, or 0.2 TW – about 1% of global demand if fully developed! 18Tom Murphy/UCSD

Categorize into Long-term Abundance/Scale Clearly Abundant: – Solar of various flavors (including algal biofuels?) – Breeder-type nuclear (uranium or thorium) – One-time geothermal (unsustainable mining of heat resource) – Ocean thermal energy – Fusion Intermediate (potential real player): – Wind; Geothermal for heating; Cellulosic Biofuels; Ocean Current Borderline (small, but relevant player): – Hydroelectric Niche (small beans; special locations): – Geothermal Electricity; Tidal; Conventional Fission; Biofuels from food crops; Ocean waves 19Tom Murphy/UCSD

Matrix of Considerations; Crude Scores 20 Do the Math: The Alternative Energy Matrix mind the gap! Host of practical considerations blue: good(+1) yellow: marginal/okay (0) red: insufficient(1) Created for Do the Math blog Each topic has dedicated blog page Note that fossil fuels beat the pants off of alternatives Spells rough adjustment ahead Lots of electricity sources Few transportation options Tom Murphy/UCSD

21 Corn Ethanol or Bust Lets calculate how much land we need to replace oil – an Iowa cornfield is 1.5% efficient at turning incident sunlight into stored chemical energy – the conversion to ethanol is at best 30% efficient assuming 1.4:1 energy-return:energy-invested, and using corn ethanol to power farm equipment and ethanol production itself – growing season is only part of year (say 50%) – net is 0.23% efficient (1.5% 30% 50%) – need 40% of J per year = J/yr to replace petroleum – this is W: thus need 6×10 14 W input (at 0.23%) – 350 W/m 2 summer insolation, need m 2, or (1,400 km) 2 of land lower limit – thats a square 1,400 km on a side; as a lower limit Tom Murphy/UCSD

22 What Does this Amount of Land Look Like? We dont have this much arable land! And where do we grow our food? Tom Murphy/UCSD

Our Trajectory Today Fermi Problems Climate Change Limits to Growth Fossil Fuel Replacements? Energy Storage Fuel Economy of Cars and EV Math 23Tom Murphy/UCSD

Energy Storage A major transition away from fossil fuels to solar, wind, etc. will require massive storage solutions The cheapest go-to solution for stand-alone systems has been lead-acid batteries – but national battery would be a cubic mile, and require more lead than is estimated to exist in global resources (let alone proven reserves) We can use estimation techniques to evaluate possible solutions – focus on home-scale solutions – scale will be 100 kWh of storage (3 days elec. for average U.S. house) – explore gravitational, batteries, compressed air, flywheels 24Tom Murphy/UCSD

Gravitational Storage Hoisting rocks or pumping tanks of water: low tech approach A rechargeable AA battery (1.5 V, 2 A-h 3 Wh 10 kJ) Hoisting mass on 3 m derrick: need 300 kg to match AA battery – gravitational storage is incredibly weak 100 kWh, in menacing 10 m high water tower, needs 3600 m 3 – 15 meters on a side – oops – legal hurdles; frightened neighbors 25Tom Murphy/UCSD

Lead-Acid Batteries Each reaction involves a Pb atom in the anode, a PbO 2 molecule in the cathode, and two electrons at 2 eV each 100 kWh (3.6×10 8 J) needs Pb atoms – 1700 moles355 kg – 1700 moles; 355 kg of lead; might guess 4× realistic – real batteries would have 1500 kg of lead (2500 kg total battery mass) 1 cubic meter 2500 kg at 2.5× density of water 1 cubic meter – will cost $15,000, and last 35 years – actually, the cheapest, most compact of the four non-fossil storage means were considering For U.S. to go full solar/wind requires significant storage – not enough lead in world resources (let alone reserves) to build for U.S. 26Tom Murphy/UCSD

Compressed Air Charged to 200 atm, energy is P 0 V 0 ln(P f /P 0 ) = 5.3P 0 V 0 – simple integration of PdV = NkT(dV/V) P 0 = 10 5 Pa Need 5.3×10 5 V 0 = 100 kWh = 3.6×10 8 J – V 0 = 700 m 3 – V f = 3.5 m 3 – cube 1.5 meters on a side 27Tom Murphy/UCSD

Flywheel Solid cylinder: I = ½MR 2 Edge velocity, v ω = v/R; E = ½Iω 2 = ¼Mv 2 Pick edge velocity v = 300 m/s Need 16 ton mass At density of steel, this is 2 cubic meters – e.g., 2 meters high; 1.2 meter diameter – acceleration at edge; v 2 /R is 16,000g – break-up: exceeds mechanical strength – need larger, slower to be safe: 2.5 m diameter, 125 m/s 10 m 3 ; 80 tons 1250g 28 can get 25 kWh unit 2×3 m; $100k Tom Murphy/UCSD

Heck: Just Use a Generator! Each gallon of gasoline contains 36.6 kWh of thermal energy Home Depot generator probably 15% efficient – seems like the rest comes out in noise! – about 5 kWh of electricity per gallon For 100 kWh, need 20 gallons (75 liters) of gasoline – gasoline: m 3 – lead acid: 1.0 m 3 – compressed air: 3.5 m 3 – flywheel: 10 m 3 – water/grav at 10 m: 3600 m 3 Hard to beat fossil fuels! – by far the cheapest, too 29Tom Murphy/UCSD

Our Trajectory Today Fermi Problems Climate Change Limits to Growth Fossil Fuel Replacements? Energy Storage Fuel Economy of Cars and EV Math 30Tom Murphy/UCSD

Is 100 MPG from Gasoline Possible? At freeway speeds, mainly fight drag: F d = ½ρc D Av 2 – ρ = 1.2 kg/m 3, c D 0.3, A 2.5 m 2, v = 30 m/s – F d 400 N Rolling resistance is about 0.01mg 100 N (indep. of v) Net 500 N A gallon of gasoline (3 kg × 10 kcal/g × 4.18 kJ/kcal) contains about 130 MJ of energy Used at ~25% efficiency in internal combustion engine W = F×d d = 30 MJ / 500 N = 60 km 35 miles 100 MPG from gasoline at freeway speeds is super-hard – need a factor of four improvement in drag piece, for instance – even a trout-shaped car unlikely to achieve this 31Tom Murphy/UCSD

Electric Vehicle (EV) Math Any window sticker will confirm: 3035 kWh of juice from the wall socket provides 100 miles of travel – using 33.5 kWh/gallon (lower heating value) ~100 MPG equiv. – but if from 35% efficient fossil fuel plant, back to 35 MPG Li-ion batteries in EVs store kWh/kg – so 300 mile range would require 100 kWh,or 1000 kg of battery Todays EV battery cost is $500/kWh – 300 mile range costs $50,000 in battery alone (hellooo, Tesla!) – reach gasoline cost after 500,000 miles of driving (at $4/gal, 40 MPG) – battery will not last that long: need ~4× reduction in battery price for cost parity not to say price should dictate everything: other reasons to adopt EV 32Tom Murphy/UCSD

Charging Bottleneck Adding gasoline to tank at 6 gallons per minute: – 3.6 kWh/sec = 13 MW of power! – two cars filling at a gas station = UCSD campus power demand! Charge efficiency 7080% – other 2030% generates heat Try sticking 100 kWh into a battery in 10 minutes – 600 kW of power (current EVs typically accept × less) 100 houses with A/C blasting; almost 1000 horsepower – 120 kW in heat/loss – distributed over 6 m 2 (cube 1 m on a side), 20 kW/m 2 – naïvely hundreds of degrees Celsius temperature rise unless aggressively water-cooled: not an easy job 33Tom Murphy/UCSD

Summary We often know more than we think about a problem Real world problems dont come with tidy numbers attached Estimation and multiple techniques often fruitful – have to at least try to solve a problem: dig in Straightforward exercise to expose major future challenges – basic assumptions about growth and energy are typically wrong Every congressperson should have an estimator on their staff – and then actually LISTEN to them! 34Tom Murphy/UCSD