COMP171 Fall 2005 Lists.

Slides:



Advertisements
Similar presentations
Chapter 25 Lists, Stacks, Queues, and Priority Queues
Advertisements

Chapter 22 Implementing lists: linked implementations.
Linked Lists Geletaw S..
Linked Lists.
Copyright © 2003 Pearson Education, Inc. Slide 1.
Chapter 3: Linked List Tutor: Angie Hui
Lilian Blot Announcements Teaching Evaluation Form week 9 practical session Formative Assessment week 10 during usual practical sessions group 1 Friday.
Pointers and Data Structures 1 Yinzhi Cao Modified from slides made by Prof Goce Trajcevski.
Inserting a Node into a Specified Position of a Linked List To create a node for the new item newNode = new Node(item); To insert a node between two nodes.
Lists CS 3358.
Chapter 17 Linked Lists.
Chapter 4 Linked Lists. © 2005 Pearson Addison-Wesley. All rights reserved4-2 Preliminaries Options for implementing an ADT List –Array has a fixed size.
Singly Linked Lists What is a singly-linked list? Why linked lists?
DATA STRUCTURES AND ALGORITHMS Prepared by İnanç TAHRALI
Linked Lists.
Linked Lists Chapter 4.
Linear Lists – Array Representation
1/27 COP 3540 Data Structures with OOP Chapter 5 Linked Lists.
1111 Abstract Data Types Cpt S 223. School of EECS, WSU.
Linear Lists – Linked List Representation
Data Structures: A Pseudocode Approach with C
Data Structures ADT List
DATA STRUCTURES USING C++ Chapter 5
Chapter 24 Lists, Stacks, and Queues
Main Index Contents 11 Main Index Contents Shifting blocks of elements… Shifting blocks of elements… Model of a list object… Model of a list object… Sample.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver Chapter 4: Linked Lists Data Abstraction & Problem Solving with.
Alan YorinksLecture 7 1 • Tonight we will look at:: • List ADT • Unsorted List • Sequential Search • Selection Sort • Sorted List • Binary Search.
Data Structures Using C++
Linked List 1. Introduction to Linked List 2. Node Class 3. Linked List 4. The Bag Class with Linked List.
1 CompSci 105 SS 2005 Principles of Computer Science Lecture 11: Linked Lists Lecturer: Santokh Singh Assignment 2 due tomorrow, i.e. Friday 21 Jan 2005.
Double-Linked Lists and Circular Lists
FIFO Queues CSE 2320 – Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington 1.
Chapter 1 Object Oriented Programming 1. OOP revolves around the concept of an objects. Objects are created using the class definition. Programming techniques.
1 DATA STRUCTURES. 2 LINKED LIST 3 PROS Dynamic in nature, so grow and shrink in size during execution Efficient memory utilization Insertion can be.
CSCI2100B Linked List Jeffrey
CSE Lecture 12 – Linked Lists …
1 Designing Hash Tables Sections 5.3, 5.4, Designing a hash table 1.Hash function: establishing a key with an indexed location in a hash table.
Hash Tables.
DATA STRUCTURE “Linked Lists” SHINTA P STMIK MDP April 2011.
Review Pseudo Code Basic elements of Pseudo code
Linked Lists.
The List ADT Textbook Sections
Copyright © 2013 by John Wiley & Sons. All rights reserved. HOW TO CREATE LINKED LISTS FROM SCRATCH CHAPTER Slides by Rick Giles 16 Only Linked List Part.
Linked Lists CENG 213 Data Structures.
Data Structures: A Pseudocode Approach with C
Linked List
Lecture 6: Linked Lists Linked lists Insert Delete Lookup Doubly-linked lists.
Linked Lists Spring Linked Lists / Slide 2 List Overview * Linked lists n Abstract data type (ADT) * Basic operations of linked lists n Insert,
Data Structures and Algorithm Analysis Lecturer: Jing Liu Homepage:
Chapter 5 – Dynamic Data Structure Par1: Abstract Data Type DATA STRUCTURES & ALGORITHMS Teacher: Nguyen Do Thai Nguyen
Chapter 1 Object Oriented Programming. OOP revolves around the concept of an objects. Objects are created using the class definition. Programming techniques.
A first look an ADTs Solving a problem involves processing data, and an important part of the solution is the careful organization of the data In order.
Chapter 5 – Dynamic Data Structure Part 2: Linked List DATA STRUCTURES & ALGORITHMS Teacher: Nguyen Do Thai Nguyen
1 Linked-list, stack and queue. 2 Outline Abstract Data Type (ADT)‏ Linked list Stack Queue.
Iterator for linked-list traversal, Template & STL COMP171 Fall 2005.
The List ADT A sequence of zero or more elements A 1, A 2, A 3, … A N-1 N: length of the list A 1 : first element A N-1 : last element A i : position i.
CS 201 Data Structures and Algorithms Chapter 3: Lists, Stacks, and Queues - I Text: Read Weiss, §3.1 – 3.5 1Izmir University of Economics.
Chapter 17: Linked Lists. Objectives In this chapter, you will: – Learn about linked lists – Learn the basic properties of linked lists – Explore insertion.
1 Linked List. Outline Introduction Insertion Description Deletion Description Basic Node Implementation Conclusion.
Data Structure & Algorithms
3/19/2016 5:40 PMLinked list1 Array-based List v.s. Linked List Yumei Huo Department of Computer Science College of Staten Island, CUNY Spring 2009.
CC 215 DATA STRUCTURES LINKED LISTS Dr. Manal Helal - Fall 2014 Lecture 3 AASTMT Engineering and Technology College 1.
UNIT-V ABSTRACT DATA TYPE 1.LIST 2.STACK 3.QUEUE EC6301-II-ECE-C.
Unit – I Lists.
CE 221 Data Structures and Algorithms
Lists CS 3358.
Linked Lists.
Linked List.
17CS1102 DATA STRUCTURES © 2018 KLEF – The contents of this presentation are an intellectual and copyrighted property of KL University. ALL RIGHTS RESERVED.
Linked Lists.
Presentation transcript:

COMP171 Fall 2005 Lists

Outline Abstract Data Type (ADT) List ADT List ADT with Array Implementation Linked lists Basic operations of linked lists Insert, find, delete, print, etc. Variations of linked lists Circular linked lists Doubly linked lists

Abstract Data Type (ADT) a set of objects + a set of operations Example: integer set of whole numbers operations: +, -, x, / Can this be generalized? (e.g. procedures generalize the notion of an operator) Yes! Abstract data type high-level abstractions (managing complexity through abstraction) Encapsulation

Encapsulation Operation on the ADT can only be done by calling the appropriate function no mention of how the set of operations is implemented The definition of the type and all operations on that type can be localized to one section of the program If we wish to change the implementation of an ADT we know where to look by revising one small section we can be sure that there is no subtlety elsewhere that will cause errors We can treat the ADT as a primitive type: we have no concern with the underlying implementation ADT  C++: class method  C++: member function

ADT… Examples the set ADT the queue ADT A set of elements Operations: union, intersection, size and complement the queue ADT A set of sequences of elements Operations: create empty queue, insert, examine, delete, and destroy queue Two ADT’s are different if they have the same underlying model but different operations E.g. a different set ADT with only the union and find operations The appropriateness of an implementation depends very much on the operations to be performed

Pros and Cons Implementation of the ADT is separate from its use Modular: one module for one ADT Easier to debug Easier for several people to work simultaneously Code for the ADT can be reused in different applications Information hiding A logical unit to do a specific job implementation details can be changed without affecting user programs Allow rapid prototying Prototype with simple ADT implementations, then tune them later when necessary Loss of efficiency

The List ADT A sequence of zero or more elements A1, A2, A3, … AN N: length of the list A1: first element AN: last element Ai: position i If N=0, then empty list Linearly ordered Ai precedes Ai+1 Ai follows Ai-1

Operations printList: print the list makeEmpty: create an empty list find: locate the position of an object in a list list: 34,12, 52, 16, 12 find(52)  3 insert: insert an object to a list insert(x,3)  34, 12, 52, x, 16, 12 remove: delete an element from the list remove(52)  34, 12, x, 16, 12 findKth: retrieve the element at a certain position

Implementation of an ADT Choose a data structure to represent the ADT E.g. arrays, records, etc. Each operation associated with the ADT is implemented by one or more subroutines Two standard implementations for the list ADT Array-based Linked list

Array Implementation Elements are stored in contiguous array positions

Array Implementation... Requires an estimate of the maximum size of the list waste space printList and find: linear findKth: constant insert and delete: slow e.g. insert at position 0 (making a new element) requires first pushing the entire array down one spot to make room e.g. delete at position 0 requires shifting all the elements in the list up one On average, half of the lists needs to be moved for either operation

Pointer Implementation (Linked List) Ensure that the list is not stored contiguously use a linked list a series of structures that are not necessarily adjacent in memory Each node contains the element and a pointer to a structure containing its successor the last cell’s next link points to NULL Compared to the array implementation, the pointer implementation uses only as much space as is needed for the elements currently on the list but requires space for the pointers in each cell

Linked Lists A linked list is a series of connected nodes B C  Head A linked list is a series of connected nodes Each node contains at least A piece of data (any type) Pointer to the next node in the list Head: pointer to the first node The last node points to NULL node A data pointer

A Simple Linked List Class We use two classes: Node and List Declare Node class for the nodes data: double-type data in this example next: a pointer to the next node in the list class Node { public: double data; // data Node* next; // pointer to next };

A Simple Linked List Class Declare List, which contains head: a pointer to the first node in the list. Since the list is empty initially, head is set to NULL Operations on List class List { public: List(void) { head = NULL; } // constructor ~List(void); // destructor bool IsEmpty() { return head == NULL; } Node* InsertNode(int index, double x); int FindNode(double x); int DeleteNode(double x); void DisplayList(void); private: Node* head; };

A Simple Linked List Class Operations of List IsEmpty: determine whether or not the list is empty InsertNode: insert a new node at a particular position FindNode: find a node with a given value DeleteNode: delete a node with a given value DisplayList: print all the nodes in the list

Inserting a new node Node* InsertNode(int index, double x) Steps Insert a node with data equal to x after the index’th elements. (i.e., when index = 0, insert the node as the first element; when index = 1, insert the node after the first element, and so on) If the insertion is successful, return the inserted node. Otherwise, return NULL. (If index is < 0 or > length of the list, the insertion will fail.) Steps Locate index’th element Allocate memory for the new node Point the new node to its successor Point the new node’s predecessor to the new node index’th element newNode

Inserting a new node Possible cases of InsertNode Insert into an empty list Insert in front Insert at back Insert in middle But, in fact, only need to handle two cases Insert as the first node (Case 1 and Case 2) Insert in the middle or at the end of the list (Case 3 and Case 4)

Inserting a new node Try to locate index’th node. If it doesn’t exist, return NULL. Node* List::InsertNode(int index, double x) { if (index < 0) return NULL; int currIndex = 1; Node* currNode = head; while (currNode && index > currIndex) { currNode = currNode->next; currIndex++; } if (index > 0 && currNode == NULL) return NULL; Node* newNode = new Node; newNode->data = x; if (index == 0) { newNode->next = head; head = newNode; else { newNode->next = currNode->next; currNode->next = newNode; return newNode;

Inserting a new node Create a new node Node* List::InsertNode(int index, double x) { if (index < 0) return NULL; int currIndex = 1; Node* currNode = head; while (currNode && index > currIndex) { currNode = currNode->next; currIndex++; } if (index > 0 && currNode == NULL) return NULL; Node* newNode = new Node; newNode->data = x; if (index == 0) { newNode->next = head; head = newNode; else { newNode->next = currNode->next; currNode->next = newNode; return newNode; Create a new node

Inserting a new node Insert as first element Node* List::InsertNode(int index, double x) { if (index < 0) return NULL; int currIndex = 1; Node* currNode = head; while (currNode && index > currIndex) { currNode = currNode->next; currIndex++; } if (index > 0 && currNode == NULL) return NULL; Node* newNode = new Node; newNode->data = x; if (index == 0) { newNode->next = head; head = newNode; else { newNode->next = currNode->next; currNode->next = newNode; return newNode; Insert as first element head newNode

Inserting a new node Insert after currNode Node* List::InsertNode(int index, double x) { if (index < 0) return NULL; int currIndex = 1; Node* currNode = head; while (currNode && index > currIndex) { currNode = currNode->next; currIndex++; } if (index > 0 && currNode == NULL) return NULL; Node* newNode = new Node; newNode->data = x; if (index == 0) { newNode->next = head; head = newNode; else { newNode->next = currNode->next; currNode->next = newNode; return newNode; Insert after currNode currNode newNode

Finding a node int FindNode(double x) Search for a node with the value equal to x in the list. If such a node is found, return its position. Otherwise, return 0. int List::FindNode(double x) { Node* currNode = head; int currIndex = 1; while (currNode && currNode->data != x) { currNode = currNode->next; currIndex++; } if (currNode) return currIndex; return 0;

Deleting a node Steps Like InsertNode, there are two special cases int DeleteNode(double x) Delete a node with the value equal to x from the list. If such a node is found, return its position. Otherwise, return 0. Steps Find the desirable node (similar to FindNode) Release the memory occupied by the found node Set the pointer of the predecessor of the found node to the successor of the found node Like InsertNode, there are two special cases Delete first node Delete the node in middle or at the end of the list

Deleting a node Try to find the node with its value equal to x int List::DeleteNode(double x) { Node* prevNode = NULL; Node* currNode = head; int currIndex = 1; while (currNode && currNode->data != x) { prevNode = currNode; currNode = currNode->next; currIndex++; } if (currNode) { if (prevNode) { prevNode->next = currNode->next; delete currNode; else { head = currNode->next; return currIndex; return 0; Try to find the node with its value equal to x

Deleting a node int List::DeleteNode(double x) { Node* prevNode = NULL; Node* currNode = head; int currIndex = 1; while (currNode && currNode->data != x) { prevNode = currNode; currNode = currNode->next; currIndex++; } if (currNode) { if (prevNode) { prevNode->next = currNode->next; delete currNode; else { head = currNode->next; return currIndex; return 0; prevNode currNode

Deleting a node int List::DeleteNode(double x) { Node* prevNode = NULL; Node* currNode = head; int currIndex = 1; while (currNode && currNode->data != x) { prevNode = currNode; currNode = currNode->next; currIndex++; } if (currNode) { if (prevNode) { prevNode->next = currNode->next; delete currNode; else { head = currNode->next; return currIndex; return 0; head currNode

Printing all the elements void DisplayList(void) Print the data of all the elements Print the number of the nodes in the list void List::DisplayList() { int num = 0; Node* currNode = head; while (currNode != NULL){ cout << currNode->data << endl; currNode = currNode->next; num++; } cout << "Number of nodes in the list: " << num << endl;

Destroying the list ~List(void) Use the destructor to release all the memory used by the list. Step through the list and delete each node one by one. List::~List(void) { Node* currNode = head, *nextNode = NULL; while (currNode != NULL) { nextNode = currNode->next; // destroy the current node delete currNode; currNode = nextNode; }

Using List result int main(void) { List list; 6 7 5 Number of nodes in the list: 3 5.0 found 4.5 not found Number of nodes in the list: 2 result int main(void) { List list; list.InsertNode(0, 7.0); // successful list.InsertNode(1, 5.0); // successful list.InsertNode(-1, 5.0); // unsuccessful list.InsertNode(0, 6.0); // successful list.InsertNode(8, 4.0); // unsuccessful // print all the elements list.DisplayList(); if(list.FindNode(5.0) > 0) cout << "5.0 found" << endl; else cout << "5.0 not found" << endl; if(list.FindNode(4.5) > 0) cout << "4.5 found" << endl; else cout << "4.5 not found" << endl; list.DeleteNode(7.0); return 0; }

Variations of Linked Lists Circular linked lists The last node points to the first node of the list How do we know when we have finished traversing the list? (Tip: check if the pointer of the current node is equal to the head.) A B C Head

Variations of Linked Lists Doubly linked lists Each node points to not only successor but the predecessor There are two NULL: at the first and last nodes in the list Advantage: given a node, it is easy to visit its predecessor. Convenient to traverse lists backwards A B C   Head

Array versus Linked Lists Linked lists are more complex to code and manage than arrays, but they have some distinct advantages. Dynamic: a linked list can easily grow and shrink in size. We don’t need to know how many nodes will be in the list. They are created in memory as needed. In contrast, the size of a C++ array is fixed at compilation time. Easy and fast insertions and deletions To insert or delete an element in an array, we need to copy to temporary variables to make room for new elements or close the gap caused by deleted elements. With a linked list, no need to move other nodes. Only need to reset some pointers.

Example: The Polynomial ADT An ADT for single-variable polynomials Array implementation

The Polynomial ADT… Implementation using a singly linked list Acceptable if most of the coefficients Aj are nonzero, undesirable if this is not the case E.g. multiply most of the time is spent multiplying zeros and stepping through nonexistent parts of the input polynomials Implementation using a singly linked list Each term is contained in one cell, and the cells are sorted in decreasing order of exponents